Skip to main content

Advertisement

Log in

A proper framework for design of aircraft production system based on lean manufacturing principles focusing to automated processes

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

This paper focuses on a proper framework that uses the requirements and concepts of lean manufacturing for a specific application to projects of aerospace manufacturing processes aiming production automation. The main goal of this guideline is to provide information, for engineers who work on the development processes, about the automation benefits that can be achieved when using this proposed guidance method of analysis presented herein. A case study is presented to validate this method’s effectiveness.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Womack JP, Jones DT (1992) A máquina que mudou o mundo. 3ed. Campus, Rio de Janeiro

    Google Scholar 

  2. Womack JP, Jones DT (2004) A Mentalidade Enxuta nas Empresas (lean thinking): Elimine o Desperdício e Crie Riqueza. Campus, São Paulo

    Google Scholar 

  3. Araujo CAC (2004) Desenvolvimento e Aplicação de um Método para Implementação de Sistemas de Produção Enxuta utilizado os Processos de Raciocínio da Teoria das Restrições e o Mapeamento do Fluxo de Valor. Dissertação de Mestrado. EESC/USP, São Carlos

    Google Scholar 

  4. Cachon G, Terwiesch C (2009) Matching supply and demand, Internationalth edn. McGraw-Hill, Singapore

    Google Scholar 

  5. Ohno T (1988) Toyota production system. Productivity, Cambridge

    Google Scholar 

  6. Shingo S (1989) A study of the Toyota production system from an industrial engineering viewpoint. Productivity, Portland

    Google Scholar 

  7. Spear SJ, Bowen HK (1999) Decoding the DNA of the Toyota production system. Harv Bus Rev 77(5):97–106

    Google Scholar 

  8. Shah R, Ward PT (2007) Defining and developing measures of lean production. J Oper Manag 25(4):785–805

    Article  Google Scholar 

  9. Pavnaskar SJ, Gershenson JK, Jambekar AB (2003) “Classification scheme for lean manufacturing tools”. Int J Prod Res 41(13):3075–3090

    Article  Google Scholar 

  10. Li S, Subba Rao S, Ragu-Nathan TS, Ragu-Nathan B (2005) Development and validation of a measurement instrument for studying supply chain management practices. J Oper Manag 23(6):618–641

    Article  Google Scholar 

  11. Seth D, Gupta V (2005) Application of value stream mapping for lean operations and cycle time reduction. Prod Plan Control 16(1):44–59

    Article  Google Scholar 

  12. Hines P, Rich N, Esain A (1999) Value stream mapping—a distribution industry application. Benchmark Int J 6(1):60–77

    Article  Google Scholar 

  13. Lasa IS, Laburu CO, Vila RC (2008) An evaluation of the value stream mapping tool. Bus Process Manag 14(1):39–52

    Article  Google Scholar 

  14. Basu R (2009) Implementing Six Sigma and lean: a practical guide to tools and techniques. Butterworth-Heinemann, Oxford

    Book  Google Scholar 

  15. Boeing (2002) Literature: tactics to improve operational efficiency

  16. Boeing (2013) 777 moving production line—benefits. http://www.boeing.com/boeing/commercial/777family/777movingline.page

  17. Lean Man (2010) TIMWOOD 7 seven wastes. http://leanman.hubpages.com/hub/Seven-Wastes#

  18. Lund E (2006) Boeing now building 777s on a moving line assembly. Magazine Assembly, December

    Google Scholar 

  19. McManus H (2000) “Seeing and improving the product development value stream”. LAI Executive Board Presentation

  20. Baxter D, Gao J, Case K et al (2008) A framework to integrate design knowledge reuse and requirements management in engineering design. Robot Comput Integr Manuf 24:585–593

    Article  Google Scholar 

  21. Meyer JD (1988) Applications of robots. International Encyclopedia of Robotics: Applications and Automation, New York

    Google Scholar 

  22. Zimmerman EH (2001) Getting factory automation right: the first time. SME, Dearborn

    Google Scholar 

  23. Waurzyniak P (2006) Modular automation for the aerospace industry. Manufacturing Engineering magazine, p.81, March

  24. Lopes KLGV (2007) Introdução a Automação Industrial. Branqs Automação, Brazil

    Google Scholar 

  25. Hopp WJ, Spearman ML (2001) “Factory physics”. McGraw Hill Companies Inc, USA, p 252

    Google Scholar 

  26. Keil S et al (2011) Establishing continuous flow manufacturing in a Wafertest-environment via value stream design. 22nd Annual IEEE/SEMI Advanced Semiconductor Manufacturing Conference, NY

    Book  Google Scholar 

  27. Gerhardt MP (2005) Sistemática para Aplicação de Procedimentos de Balanceamento em Linhas de Montagem Multi-Modelos. Dissertação de Mestrado pela Universidade Federal do Rio Grande do Sul

  28. Slack N et al (2007) Administração da Produção. Editora Atlas, São Paulo

    Google Scholar 

  29. ST. Aubyn M et al. (2009) Study on the efficiency and effectiveness of public spending on tertiary education. Economic Papers 390

  30. Zolfaghari S, Roa EVL (2006) Cellular manufacturing versus a hybrid system: a comparative study. J Manuf Technol Manag 17(7):942–961

    Article  Google Scholar 

  31. Tortorella GL, Fogliatto FS (2008) Planejamento Sistemático de Layout com Apoio de Análise de Decisão Multicritério. Produção, v.18, no3

  32. Liberopoulos G, Kozanidis G, Tsarouhas P (2007) Performance evaluation of an automatic transfer line with WIP scrapping during long failures. Manuf Serv Oper Manag 9:62–83

    Article  Google Scholar 

  33. Aris RB (2006) Maintenance factors in building design. Tese (Mestrado). Faculdade de Engenharia Civil—Universidade de Tecnologia da Malásia. Maio

  34. Melhado SB, Mesquita MJM (2005) Gestão do Ciclo de Vida do Empreendimento: Estratégias para eficiência e eficácia com base na interface Operação—Concepção. IV SIBRAGEC—Simpósio Brasileiro de Gestão e Economia da Construção, Porto Alegre

    Google Scholar 

  35. Tsarouhas P (2007) Implementation of total productive maintenance in food industry: a case study. J Qual Maint Eng 13(1):5–18

    Article  Google Scholar 

  36. Kunde WG (2009) Setup rápido: uma atividade que alia o conhecimento técnico e a criatividade. Gestão da Produção e Qualidade, Novembro

  37. Streeck W (1988) The firm as a place of training and learning. The Transformation of Firm and Work. Il Mulino, Bologna

    Google Scholar 

  38. Fulkerson B (1997) A response to dynamic change in the market place. J Decis Support Syst 21:199–214

    Article  Google Scholar 

  39. Newcomb PJ, Bras B, Rosen DW (1996) Implications of modularity on product design for the life cycle. ASME design engineering technical conferences, DETC96/DTM-1516, Irvine, CA

  40. Oborski P (2004) Man–machine interactions in advanced manufacturing systems. Int J Adv Manuf Technol 23(3–4):227–232

    Article  Google Scholar 

  41. Beauchamp Y, Stobbe TJ (1995) A review of experimental studies on human-robot system situations and their design implications. Int J Hum Factors Manuf 5(3):283–302

    Article  Google Scholar 

  42. Edwards WK, Poole ES, Stoll J (2007) Security automation considered harmful? School of Interactive Computing and GVU Center—Georgia Institute of Technology, Atlanta, pp 33–42

    Google Scholar 

  43. Tan JTC et al (2009) Safety design and development of human-robot collaboration in cellular manufacturing. 5th Annual IEEE Conference on Automation Science and Engineering Bangalore, India

    Google Scholar 

  44. Navon R, Shpatnitsky Y (2005) Field experiments in automated monitoring of road construction. J Constr Eng Manage 131(4):487–493

    Article  Google Scholar 

  45. Potkonjak V et al (2000) Dynamics of anthropomorphic painting robot: quality analysis and cost reduction. Robot Auton Syst 32:17–38

    Article  Google Scholar 

  46. Skibniewski M, Hendrickson C (1988) Analysis of robotic surface finishing work on construction site. J Constr Eng Manage ASCE 114(1):53–68

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. F. Barbosa.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Barbosa, G.F., Carvalho, J. & Filho, E.V.G. A proper framework for design of aircraft production system based on lean manufacturing principles focusing to automated processes. Int J Adv Manuf Technol 72, 1257–1273 (2014). https://doi.org/10.1007/s00170-014-5729-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-014-5729-3

Keywords

Navigation