The effect of lateral extra-articular tenodesis on in vivo cartilage contact in combined anterior cruciate ligament reconstruction

Abstract

Purpose

Lateral extra-articular tenodesis (LET) may confer improved rotational stability after anterior cruciate ligament reconstruction (ACLR). Little is known about how LET affects in vivo cartilage contact after ACLR. The aim of this study was to investigate the effect of LET in combination with ACLR (ACLR + LET) on in vivo cartilage contact kinematics compared to isolated ACLR (ACLR) during downhill running. It was hypothesised that cartilage contact area in the lateral compartment would be larger in ACLR + LET compared with ACLR, and that the anterior–posterior (A–P) position of the contact center on the lateral tibia would be more anterior after ACLR + LET than after ACLR.

Methods

Twenty patients were randomly assigned into ACLR + LET or ACLR during surgery (ClinicalTrials.gov:NCT02913404). At 6 months and 12 months after surgery, participants were imaged during downhill running using biplane radiography. Tibiofemoral motion was tracked using a validated registration process. Patient-specific cartilage models, obtained from 3 T MRI, were registered to track bone models and used to calculate the dynamic cartilage contact area and center of cartilage contact in both the medial and lateral tibiofemoral compartments, respectively. The side-to-side differences (SSD) were compared between groups using a Mann–Whitney U test.

Results

At 6 months after surgery, the SSD in A–P cartilage contact center in ACLR + LET (3.9 ± 2.6 mm, 4.4 ± 3.1 mm) was larger than in ACLR (1.2 ± 1.6 mm, 1.5 ± 2.0 mm) at 10% and 20% of the gait cycle, respectively (p < 0.01, p < 0.05). There was no difference in the SSD in cartilage contact center at 12 months after surgery. There was no difference in SSD of cartilage contact area in the medial and lateral compartments at both 6 and 12 months after surgery. There were no adverse events during the trial.

Conclusion

LET in combination with ACLR may affect the cartilage contact center during downhill running in the early post-operation phase, but this effect is lost in the longer term. This suggests that healing and neuromuscular adaptation occur over time and may also indicate a dampening of the effect of LET over time.

(337 /350 words)

Level of evidence

Level II.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. 1.

    Akpinar B, Thorhauer E, Tashman S, Irrgang JJ, Fu FH, Anderst WJ (2019) Tibiofemoral cartilage contact differences between level walking and downhill running. Orthop J Sports Med 7:2325967119836164

    PubMed  PubMed Central  Article  Google Scholar 

  2. 2.

    Anderst W, Zauel R, Bishop J, Demps E, Tashman S (2009) Validation of three-dimensional model-based tibio-femoral tracking during running. Med Eng Phys 31:10–16

    PubMed  Article  PubMed Central  Google Scholar 

  3. 3.

    Ayeni OR, Chahal M, Tran MN, Sprague S (2012) Pivot shift as an outcome measure for ACL reconstruction: a systematic review. Knee Surg Sports Traumatol Arthrosc 20:767–777

    PubMed  Article  PubMed Central  Google Scholar 

  4. 4.

    Capin JJ, Khandha A, Zarzycki R, Manal K, Buchanan TS, Snyder-Mackler L (2018) Gait mechanics after ACL reconstruction differ according to medial meniscal treatment. J Bone Joint Surg Am 100:1209–1216

    PubMed  PubMed Central  Article  Google Scholar 

  5. 5.

    Castoldi M, Magnussen RA, Gunst S, Batailler C, Neyret P, Lustig S et al (2020) A randomized controlled trial of bone-patellar tendon-bone anterior cruciate ligament reconstruction with and without lateral extra-articular tenodesis: 19-year clinical and radiological follow-up. Am J Sports Med 48:1665–1672

    PubMed  Article  PubMed Central  Google Scholar 

  6. 6.

    Christel P, Djian P (2002) Anterio-lateral extra-articular tenodesis of the knee using a short strip of fascia lata. Rev Chir Orthop Reparatrice Appar Mot 88:508–513

    CAS  PubMed  PubMed Central  Google Scholar 

  7. 7.

    Draganich LF, Reider B, Miller PR (1989) An in vitro study of the Muller anterolateral femorotibial ligament tenodesis in the anterior cruciate ligament deficient knee. Am J Sports Med 17:357–362

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  8. 8.

    Engebretsen L, Lew WD, Lewis JL, Hunter RE (1990) The effect of an iliotibial tenodesis on intraarticular graft forces and knee joint motion. Am J Sports Med 18:169–176

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  9. 9.

    Faul F, Erdfelder E, Lang AG, Buchner A (2007) G*Power 3: a flexible statistical power analysis program for the social, behavioral, and biomedical sciences. Behav Res Methods 39:175–191

    PubMed  PubMed Central  Article  Google Scholar 

  10. 10.

    Geeslin AG, Moatshe G, Chahla J, Kruckeberg BM, Muckenhirn KJ, Dornan GJ et al (2018) Anterolateral knee extra-articular stabilizers: a robotic study comparing anterolateral ligament reconstruction and modified Lemaire lateral extra-articular tenodesis. Am J Sports Med 46:607–616

    PubMed  Article  PubMed Central  Google Scholar 

  11. 11.

    Getgood AMJ, Bryant DM, Litchfield R, Heard M, McCormack RG, Rezansoff A et al (2020) Lateral extra-articular tenodesis reduces failure of hamstring tendon autograft anterior cruciate ligament reconstruction: 2-year outcomes from the stability study randomized clinical trial. Am J Sports Med 48:285–297

    PubMed  Article  PubMed Central  Google Scholar 

  12. 12.

    Grieco TF, Sharma A, Dessinger GM, Cates HE, Komistek RD (2018) In vivo kinematic comparison of a bicruciate stabilized total knee arthroplasty and the normal knee using fluoroscopy. J Arthroplasty 33:565–571

    PubMed  Article  PubMed Central  Google Scholar 

  13. 13.

    Harner CD, Irrgang JJ, Paul J, Dearwater S, Fu FH (1992) Loss of motion after anterior cruciate ligament reconstruction. Am J Sports Med 20:499–506

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  14. 14.

    Hoshino Y, Araujo P, Ahlden M, Samuelsson K, Muller B, Hofbauer M et al (2013) Quantitative evaluation of the pivot shift by image analysis using the iPad. Knee Surg Sports Traumatol Arthrosc 21:975–980

    PubMed  Article  PubMed Central  Google Scholar 

  15. 15.

    Inderhaug E, Stephen JM, El-Daou H, Williams A, Amis AA (2017) The effects of anterolateral tenodesis on tibiofemoral contact pressures and kinematics. Am J Sports Med 45:3081–3088

    PubMed  Article  PubMed Central  Google Scholar 

  16. 16.

    Kaiser JM, Vignos MF, Kijowski R, Baer G, Thelen DG (2017) Effect of loading on in vivo tibiofemoral and patellofemoral kinematics of healthy and acl-reconstructed knees. Am J Sports Med 45:3272–3279

    PubMed  PubMed Central  Article  Google Scholar 

  17. 17.

    Kocher MS, Steadman JR, Briggs KK, Sterett WI, Hawkins RJ (2004) Relationships between objective assessment of ligament stability and subjective assessment of symptoms and function after anterior cruciate ligament reconstruction. Am J Sports Med 32:629–634

    PubMed  Article  PubMed Central  Google Scholar 

  18. 18.

    Kuster M, Wood GA, Sakurai S, Blatter G (1994) 1994 Nicola Cerulli Young researchers award. Downhill walking: a stressful task for the anterior cruciate ligament? A biomechanical study with clinical implications. Knee Surg Sports Traumatol Arthrosc 2:2–7

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  19. 19.

    Lee MC, Seong SC, Lee S, Chang CB, Park YK, Jo H et al (2007) Vertical femoral tunnel placement results in rotational knee laxity after anterior cruciate ligament reconstruction. Arthroscopy 23:771–778

    PubMed  Article  PubMed Central  Google Scholar 

  20. 20.

    Leitze Z, Losee RE, Jokl P, Johnson TR, Feagin JA (2005) Implications of the pivot shift in the ACL-deficient knee. Clin Orthop Relat Res 436:229–236

    Article  Google Scholar 

  21. 21.

    Logan CA, Aman ZS, Kemler BR, Storaci HW, Dornan GJ, LaPrade RF (2019) Influence of medial meniscus bucket-handle repair in setting of anterior cruciate ligament reconstruction on tibiofemoral contact mechanics: a biomechanical study. Arthroscopy 35:2412–2420

    PubMed  Article  PubMed Central  Google Scholar 

  22. 22.

    Lopomo N, Signorelli C, Bonanzinga T, Marcheggiani Muccioli GM, Visani A, Zaffagnini S (2012) Quantitative assessment of pivot-shift using inertial sensors. Knee Surg Sports Traumatol Arthrosc 20:713–717

    PubMed  Article  PubMed Central  Google Scholar 

  23. 23.

    Marcacci M, Zaffagnini S, Iacono F, Vascellari A, Loreti I, Kon E et al (2003) Intra- and extra-articular anterior cruciate ligament reconstruction utilizing autogeneous semitendinosus and gracilis tendons: 5-year clinical results. Knee Surg Sports Traumatol Arthrosc 11:2–8

    PubMed  Article  PubMed Central  Google Scholar 

  24. 24.

    Miranda DL, Fadale PD, Hulstyn MJ, Shalvoy RM, Machan JT, Fleming BC (2013) Knee biomechanics during a jump-cut maneuver: effects of sex and ACL surgery. Med Sci Sports Exerc 45:942–951

    PubMed  PubMed Central  Article  Google Scholar 

  25. 25.

    Mohtadi N, Chan D, Barber R, Oddone Paolucci E (2015) A randomized clinical trial comparing patellar tendon, hamstring tendon, and double-bundle ACL reconstructions: patient-reported and clinical outcomes at a minimal 2-year follow-up. Clin J Sport Med 25:321–331

    PubMed  Article  PubMed Central  Google Scholar 

  26. 26.

    Nagai K, Gale T, Herbst E, Tashiro Y, Irrgang JJ, Tashman S et al (2018) Knee hyperextension does not adversely affect dynamic in vivo kinematics after anterior cruciate ligament reconstruction. Knee Surg Sports Traumatol Arthrosc 26:448–454

    PubMed  Article  PubMed Central  Google Scholar 

  27. 27.

    Noyes FR, Barber SD (1991) The effect of an extra-articular procedure on allograft reconstructions for chronic ruptures of the anterior cruciate ligament. J Bone Joint Surg Am 73:882–892

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  28. 28.

    O’Brien SJ, Warren RF, Wickiewicz TL, Rawlins BA, Allen AA, Panariello R et al (1991) The iliotibial band lateral sling procedure and its effect on the results of anterior cruciate ligament reconstruction. Am J Sports Med 19:21–25

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  29. 29.

    Pernin J, Verdonk P, Si Selmi TA, Massin P, Neyret P (2010) Long-term follow-up of 24.5 years after intra-articular anterior cruciate ligament reconstruction with lateral extra-articular augmentation. Am J Sports Med 38:1094–1102

    PubMed  Article  PubMed Central  Google Scholar 

  30. 30.

    Prodromos CC, Joyce BT, Shi K, Keller BL (2005) A meta-analysis of stability after anterior cruciate ligament reconstruction as a function of hamstring versus patellar tendon graft and fixation type. Arthroscopy 21:1202

    PubMed  PubMed Central  Google Scholar 

  31. 31.

    Rezende FC, de Moraes VY, Martimbianco AL, Luzo MV, da Silveira Franciozi CE, Belloti JC (2015) Does combined intra- and extraarticular ACL reconstruction improve function and stability? A meta-analysis. Clin Orthop Relat Res 473:2609–2618

    PubMed  PubMed Central  Article  Google Scholar 

  32. 32.

    Salem HS, Varzhapetyan V, Patel N, Dodson CC, Tjoumakaris FP, Freedman KB (2019) Anterior cruciate ligament reconstruction in young female athletes: patellar versus hamstring tendon autografts. Am J Sports Med 47:2086–2092

    PubMed  Article  PubMed Central  Google Scholar 

  33. 33.

    Samuelson M, Draganich LF, Zhou X, Krumins P, Reider B (1996) The effects of knee reconstruction on combined anterior cruciate ligament and anterolateral capsular deficiencies. Am J Sports Med 24:492–497

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  34. 34.

    Shimakawa T, Burkhart TA, Dunning CE, Degen RM, Getgood AM (2019) Lateral compartment contact pressures do not increase after lateral extra-articular tenodesis and subsequent subtotal meniscectomy. Orthop J Sports Med 7:2325967119854657

    PubMed  PubMed Central  Article  Google Scholar 

  35. 35.

    Tashman S, Anderst W (2003) In-vivo measurement of dynamic joint motion using high speed biplane radiography and CT: application to canine ACL deficiency. J Biomech Eng 125:238–245

    PubMed  Article  PubMed Central  Google Scholar 

  36. 36.

    Tashman S, Collon D, Anderson K, Kolowich P, Anderst W (2004) Abnormal rotational knee motion during running after anterior cruciate ligament reconstruction. Am J Sports Med 32:975–983

    PubMed  Article  PubMed Central  Google Scholar 

  37. 37.

    Tashman S, Kolowich P, Collon D, Anderson K, Anderst W (2007) Dynamic function of the ACL-reconstructed knee during running. Clin Orthop Relat Res 454:66–73

    PubMed  Article  PubMed Central  Google Scholar 

  38. 38.

    Thorhauer E, Tashman S (2015) Validation of a method for combining biplanar radiography and magnetic resonance imaging to estimate knee cartilage contact. Med Eng Phys 37:937–947

    PubMed  PubMed Central  Article  Google Scholar 

  39. 39.

    Vadala AP, Iorio R, De Carli A, Bonifazi A, Iorio C, Gatti A et al (2013) An extra-articular procedure improves the clinical outcome in anterior cruciate ligament reconstruction with hamstrings in female athletes. Int Orthop 37:187–192

    PubMed  Article  PubMed Central  Google Scholar 

  40. 40.

    Van de Velde SK, Gill TJ, Li G (2009) Evaluation of kinematics of anterior cruciate ligament-deficient knees with use of advanced imaging techniques, three-dimensional modeling techniques, and robotics. J Bone Joint Surg Am 91(Suppl 1):108–114

    PubMed  PubMed Central  Article  Google Scholar 

  41. 41.

    Webster KE, Feller JA (2016) Exploring the high reinjury rate in younger patients undergoing anterior cruciate ligament reconstruction. Am J Sports Med 44:2827–2832

    PubMed  Article  PubMed Central  Google Scholar 

  42. 42.

    Yabroudi MA, Irrgang JJ (2013) Rehabilitation and return to play after anatomic anterior cruciate ligament reconstruction. Clin Sports Med 32:165–175

    PubMed  Article  PubMed Central  Google Scholar 

  43. 43.

    Yunes M, Richmond JC, Engels EA, Pinczewski LA (2001) Patellar versus hamstring tendons in anterior cruciate ligament reconstruction: a meta-analysis. Arthroscopy 17:248–257

    PubMed  Article  PubMed Central  Google Scholar 

  44. 44.

    Zaffagnini S, Marcheggiani Muccioli GM, Grassi A, Roberti di Sarsina T, Raggi F, Signorelli C et al (2017) Over-the-top ACL reconstruction plus extra-articular lateral tenodesis with hamstring tendon grafts: prospective evaluation with 20-year minimum follow-up. Am J Sports Med 45:3233–3242

    PubMed  Article  PubMed Central  Google Scholar 

Download references

Acknowledgements

None.

Funding

Funding was received from the Department of Orthopaedic Surgery at the University of Pittsburgh.

Author information

Affiliations

Authors

Contributions

KN chiefly drafted the manuscript and carried out the acquisition of data and the analysis and interpretation of data. TG, DC, FS, and BL carried out the acquisition of data. WA and VM carried out the design of the study and revised the manuscript. FF conducted final approval of the manuscript to be submitted. All the authors read and approved the final manuscript.

Corresponding author

Correspondence to William Anderst.

Ethics declarations

Conflict of interest

FF receives personal fees and non-financial support from Smith & Nephew. VM receives grants and personal fees from Smith & Nephew and grants from Arthrex.

Ethical approval

IRB-approved study (IRB No. 19060375).

Informed consent

A total of 20 patients provided informed written consent to participate.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Nishida, K., Gale, T., Chiba, D. et al. The effect of lateral extra-articular tenodesis on in vivo cartilage contact in combined anterior cruciate ligament reconstruction. Knee Surg Sports Traumatol Arthrosc (2021). https://doi.org/10.1007/s00167-021-06480-4

Download citation

Keywords

  • Anterior cruciate ligament
  • Lateral extra-articular tenodesis
  • Residual rotatory instability
  • Cartilage contact kinematics
  • Pivot shift