Abstract
Purpose
Different alignment types for a better outcome after TKA were described. However, it is not clear how kinematic alignment influences knee joint kinematic. The purpose of this study was to analyze whether adapted tibial cuts in constitutional varus knees affect knee joint kinematics regarding femoral roll-back, varus/valgus angle, and femorotibial rotation.
Methods
Seven cadaveric knees with constitutional varus alignment were examined in the native state and after implantation of a cruciate retaining (CR)-TKA with 0°, 3° and 6° tibia cuts using an established knee joint simulator. The effects of varus alignment on femorotibial rollback and rotation was determined. In addition, the native knee joint and different tibial cuts in CR-TKA were compared with Student’s t test.
Results
Total knee replacement with a 3° and 6° varus tibia cut had the greatest varus deviation to the native knee (mean 1.6° ± 0.09°, respectively); while, knees with a 0° (mean 0.2° ± 0.01°) tibia cut were most similar to the constitutional varus knee joint. The femoral roll-back in the medial compartment was increased in the native knee (5.7–12.5 mm). A 6° varus cut had a restricted translation in the medial compartment (2–3.2 mm). In the lateral compartment, the extensive translation was observed with a 0° varus cut, followed by 3° and 6° and the native knee. All cuts showed significantly different mean values. Only the cuts at 3° and at 6° in the medial compartment and the cuts at 0° and at 3° in the lateral compartment did not differ significantly. In respect to tibiofemoral rotation, 0° and 3° varus cuts across all loads had the least difference to the native knee (3.4°), with a 0° varus cut showing a higher absolute internal rotation of the tibia than the native knee. Changes in knee kinematics of the tibiofemoral rotation showed significantly different mean values.
Conclusion
The potentially improved outcome parameters in TKA with adapted tibia cuts in constitutional varus knees cannot be completely explained by the changes to knee kinematics. Mechanical alignment seems to result in more balanced load distribution and kinematics more closely resembling the native knee. From a kinematic point of view, it is not recommended to place the tibia in more than 3° of varus.
Level of evidence
Biomechanical study.
This is a preview of subscription content, access via your institution.






References
- 1.
Bellemans J, Colyn W, Vandenneucker H, Victor J (2012) Is neutral mechanical alignment normal for all patients? The concept of constitutional varus. Clin Orthop Relat Res 470:45–53
- 2.
Belvedere C, Tamarri S, Ensini A (2015) Better joint motion and muscle activity are achieved using kinematic alignment than neutral mechanical alignment in total knee replacement. Gait posture 42:S19–20
- 3.
Berend ME, Ritter MA, Meding JB, Faris PM, Keating EM, Redelman R et al (2004) The Chetranjan Ranawat Award: tibial component failure mechanisms in total knee arthroplasty. Clin Orthop Relat Res 428:26–34
- 4.
Calliess T, Bauer K, Stukenborg-Colsman C, Windhagen H, Budde S, Ettinger M (2017) PSI kinematic versus non-PSI mechanical alignment in total knee arthroplasty: a prospective, randomized study. Knee Surg Sports Traumatol Arthrosc 25:1743–1748
- 5.
Dossett HG, Estrada NA, Swartz GJ, LeFevre GW, Kwasman BG (2014) A randomised controlled trial of kinematically and mechanically aligned total knee replacements: 2-year clinical results. Bone Joint J 96-b:907–913
- 6.
Dossett HG, Swartz GJ, Estrada NA, LeFevre GW, Kwasman BG (2012) Kinematically versus mechanically aligned total knee arthroplasty. Orthopedics 35:e160–169
- 7.
Ghomrawi HM, Mancuso CA, Dunning A, Gonzalez Della Valle A, Alexiades M, Cornell C et al (2017) Do surgeon expectations predict clinically important improvements in WOMAC Scores After THA and TKA? Clin Orthop Relat Res. https://doi.org/10.1007/s11999-017-5331-8
- 8.
Hatfield GL, Hubley-Kozey CL, Astephen Wilson JL, Dunbar MJ (2011) The effect of total knee arthroplasty on knee joint kinematics and kinetics during gait. J Arthroplasty 26:309–318
- 9.
Hirschmann MT, Hess S, Behrend H, Amsler F, Leclercq V, Moser LB (2019) Phenotyping of hip–knee–ankle angle in young non-osteoarthritic knees provides better understanding of native alignment variability. Knee Surg Sports Traumatol Arthrosc. https://doi.org/10.1007/s00167-019-05507-1
- 10.
Hirschmann MT, Moser LB, Amsler F, Behrend H, Leclercq V, Hess S (2019) Phenotyping the knee in young non-osteoarthritic knees shows a wide distribution of femoral and tibial coronal alignment. Knee Surg Sports Traumatol Arthrosc. https://doi.org/10.1007/s00167-019-05508-0
- 11.
Hirschmann MT, Moser LB, Amsler F, Behrend H, Leclerq V, Hess S (2019) Functional knee phenotypes: a novel classification for phenotyping the coronal lower limb alignment based on the native alignment in young non-osteoarthritic patients. Knee Surg Sports Traumatol Arthrosc. https://doi.org/10.1007/s00167-019-05509-z
- 12.
Howell SM, Papadopoulos S, Kuznik KT, Hull ML (2013) Accurate alignment and high function after kinematically aligned TKA performed with generic instruments. Knee Surg Sports Traumatol Arthrosc 21:2271–2280
- 13.
Insall JN, Binazzi R, Soudry M, Mestriner LA (1985) Total knee arthroplasty. Clin Orthop Relat Res 192:13–22
- 14.
Ishikawa M, Kuriyama S, Ito H, Furu M, Nakamura S, Matsuda S (2015) Kinematic alignment produces near-normal knee motion but increases contact stress after total knee arthroplasty: a case study on a single implant design. Knee 22:206–212
- 15.
Ji HM, Han J, Jin DS, Seo H, Won YY (2016) Kinematically aligned TKA can align knee joint line to horizontal. Knee Surg Sports Traumatol Arthrosc 24:2436–2441
- 16.
Johal P, Williams A, Wragg P, Hunt D, Gedroyc W (2005) Tibio-femoral movement in the living knee. A study of weight bearing and non-weight bearing knee kinematics using 'interventional' MRI. J Biomech 38:269–276
- 17.
Lange T, Schmitt J, Kopkow C, Rataj E, Gunther KP, Lutzner J (2017) What do patients expect from total knee arthroplasty? A Delphi consensus study on patient treatment goals. J Arthroplasty 32:2093–2099.e2091
- 18.
Lee YS, Howell SM, Won YY, Lee OS, Lee SH, Vahedi H et al (2017) Kinematic alignment is a possible alternative to mechanical alignment in total knee arthroplasty. Knee Surg Sports Traumatol Arthrosc 25(11):3467–3479
- 19.
Magnussen RA, Weppe F, Demey G, Servien E, Lustig S (2011) Residual varus alignment does not compromise results of TKAs in patients with preoperative varus. Clin Orthop Relat Res 469:3443–3450
- 20.
Matsumoto T, Takayama K, Ishida K, Hayashi S, Hashimoto S, Kuroda R (2017) Radiological and clinical comparison of kinematically versus mechanically aligned total knee arthroplasty. Bone Joint J 99-b:640–646
- 21.
McEwen PJ, Dlaska CE, Jovanovic IA, Doma K, Brandon BJ (2020) Computer-assisted kinematic and mechanical axis total knee arthroplasty: a prospective randomized controlled trial of bilateral simultaneous surgery. J Arthroplasty 35:443–450
- 22.
Morgan SS, Bonshahi A, Pradhan N, Gregory A, Gambhir A, Porter ML (2008) The influence of postoperative coronal alignment on revision surgery in total knee arthroplasty. Int Orthop 32:639–642
- 23.
Niki Y, Nagura T, Kobayashi S, Udagawa K, Harato K (2020) Who will benefit from kinematically aligned total knee arthroplasty? Perspectives on patient-reported outcome measures. J Arthroplasty 35(438–442):e432
- 24.
Parratte S, Pagnano MW, Trousdale RT, Berry DJ (2010) Effect of postoperative mechanical axis alignment on the 15-year survival of modern, cemented total knee replacements. J Bone Joint Surg Am 92:2143–2149
- 25.
Ritter MA, Davis KE, Meding JB, Pierson JL, Berend ME, Malinzak RA (2011) The effect of alignment and BMI on failure of total knee replacement. J Bone Joint Surg Am 93:1588–1596
- 26.
Riviere C, Iranpour F, Auvinet E, Howell S, Vendittoli PA, Cobb J et al (2017) Alignment options for total knee arthroplasty: a systematic review. Orthop Traumatol Surg Res 103:1047–1056
- 27.
Shelton TJ, Gill M, Athwal G, Howell SM, Hull ML (2019) Outcomes in patients with a calipered kinematically aligned TKA that already had a contralateral mechanically aligned TKA. J Knee Surg. https://doi.org/10.1055/s-0039-1693000
- 28.
Suh D-S, Kang K-T, Son J, Kwon O-R, Baek C, Koh Y-G (2017) Computational study on the effect of malalignment of the tibial component on the biomechanics of total knee arthroplasty. Bone Joint Res 6:623–630
- 29.
Theodore W, Twiggs J, Kolos E, Roe J, Fritsch B, Dickison D et al (2017) Variability in static alignment and kinematics for kinematically aligned TKA. Knee 24:733–744
- 30.
Vanlommel L, Vanlommel J, Claes S, Bellemans J (2013) Slight undercorrection following total knee arthroplasty results in superior clinical outcomes in varus knees. Knee Surg Sports Traumatol Arthrosc 21:2325–2330
- 31.
Victor J, Labey L, Wong P, Innocenti B, Bellemans J (2010) The influence of muscle load on tibiofemoral knee kinematics. J Orthop Res 28:419–428
- 32.
Victor J, Van Glabbeek F, Vander Sloten J, Parizel PM, Somville J, Bellemans J (2009) An experimental model for kinematic analysis of the knee. J Bone Joint Surg Am 91(Suppl 6):150–163
- 33.
Wallace AL, Harris ML, Walsh WR, Bruce WJM (1998) Intraoperative assessment of tibiofemoral contact stresses in total knee arthroplasty. J Arthroplasty 13:923–927
- 34.
Yoon JR, Han SB, Jee MK, Shin YS (2017) Comparison of kinematic and mechanical alignment techniques in primary total knee arthroplasty: a meta-analysis. Medicine (Baltimore) 96:e8157
- 35.
Young SW, Walker ML, Bayan A, Briant-Evans T, Pavlou P, Farrington B (2017) The Chitranjan S. Ranawat Award: no difference in 2-year functional outcomes using kinematic versus mechanical alignment in TKA: a randomized controlled clinical trial. Clin Orthop Relat Res 475:9–20
Funding
Funding was provided by Deutsche Arthrosehilfe e.V.
Author information
Affiliations
Corresponding author
Ethics declarations
Conflict of interest
We certify that we have not signed any agreement with commercial interest related to this study, which would in any way limit publication of any and all data generated for the study or to delay publication for any reason. Dr. Faschingbauer reports personal fees from Deutsche Arthrosehilfe e.V. during the conduct of the study.
Ethical approval
The authors’ institutional review board approved this study.
Study conduct and appointment
FM: planning/conception of the study, collection of data, analysis and interpretation, statistical analysis, writing and revising article; (orthopedic surgeon). HS: collection of data, analysis and interpretation, statistical analysis; (Dr. bio. hum.). SA, DL: interpretation of data, critical revision of the article; (Dr. bio. hum.). BF: critical revision of the article, final approval of the article, overall responsibility; (senior surgeon Hospital for Special Surgery). RH: critical revision of the article, final approval of the article, overall responsibility; (surgeon in chief University of Ulm).
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Electronic supplementary material
Below is the link to the electronic supplementary material.
Rights and permissions
About this article
Cite this article
Faschingbauer, M., Hacker, S., Seitz, A. et al. The tibial cut in total knee arthroplasty influences the varus alignment, the femoral roll-back and the tibiofemoral rotation in patients with constitutional varus. Knee Surg Sports Traumatol Arthrosc 29, 641–651 (2021). https://doi.org/10.1007/s00167-020-05996-5
Received:
Accepted:
Published:
Issue Date:
Keywords
- Knee
- Total knee replacement
- Mechanics