High congruency MB insert design: stabilizing knee joint even with PCL deficiency

Abstract

Purpose

PCL management and choice of insert design and mobility in total knee arthroplasty are still debated in the literature. Consequently, the purpose of this study was to analyze the biomechanics of a fixed and a mobile bearing total knee arthroplasty with conventional and ultra-congruent insert during walking and squat activities, using finite element analysis, and to check the performance in a knee with healthy and deficient PCL.

Methods

The study was based on an already validated and published knee model. Fixed bearing and mobile bearing cruciate-retain designs were selected for this study. Implant kinematics and kinetics were calculated, following previously experimental tests, during a walking cycle and a loaded squat in a knee with intact and with deficient PCL.

Results

Mobile bearing design, due to its higher congruency, was able to complete the task in intact and deficient PCL conditions, with similar internal–external femoral rotation and with a slight higher anterior translation of the one of the intact knees. Such outcomes were also in agreement with the results of different experimental studies of native knee specimens under similar boundary conditions. Contrariwise, fixed bearing design was able to accomplish the task only in healthy PCL conditions.

Conclusion

Results demonstrated how the high congruency of the mobile bearing design is able to guarantee proper knee stability and kinematics even when the PCL is deficient. Instead, the fixed bearing insert, with lower congruency, is not able, in the absence of the PCL, to stabilize the joint inducing irregular kinematic pattern and component dislocation. Surgeons will have to consider these findings to guarantee the best outcome for the patient and the related change in stability in case of PCL deficiency.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. 1.

    Andriacchi TP, Galante JO, Fermier RW (1982) The influence of total knee-replacement design on walking and stair-climbing. J Bone Jt Surg Am 64(9):1328–1335

    CAS  Google Scholar 

  2. 2.

    Arnout N, Vanlommel L, Vanlommel J, Luyckx JP, Labey L, Innocenti B, Victor J, Bellemans J (2015) Post-cam mechanics and tibiofemoral kinematics: a dynamic in vitro analysis of eight posterior-stabilized total knee designs. Knee Surg Sports Traumatol Arthrosc 23(11):3343–3353

    CAS  PubMed  Google Scholar 

  3. 3.

    Au AG, James Raso V, Liggins AB, Amrfazli A (2007) Contribution of loading conditions and material properties to stress shielding near the tibial component of total knee replacements. J Biomech 40(6):1410–1416

    PubMed  Google Scholar 

  4. 4.

    Belvedere C, Leardini A, Catani F, Pianigiani S, Innocenti B (2017) In vivo kinematics of knee replacement during daily living activities: condylar and post-cam contact assessment by three-dimensional fluoroscopy and finite element analyses. J Orthop Res 35(7):1396–1403

    PubMed  Google Scholar 

  5. 5.

    Brihault J, Navacchia A, Pianigiani S, Labey L, De Corte R, Pascale V, Innocenti B (2016) All-polyethylene tibial components generate higher stress and micromotions than metal-backed tibial components in total knee arthroplasty. Knee Surg Sports Traumatol Arthrosc 24(8):2550–2559

    PubMed  Google Scholar 

  6. 6.

    Capella M, Dolfin M, Saccia F (2016) Mobile bearing and fixed bearing total knee arthroplasty. Ann Transl Med 4(7):127

    PubMed  PubMed Central  Google Scholar 

  7. 7.

    Castellarin G, Pianigiani S, Innocenti B (2019) Asymmetric polyethylene inserts promote favorable kinematics and better clinical outcome compared to symmetric inserts in a mobile bearing total knee arthroplasty. Knee Surg Sports Traumatol Arthrosc 27(4):1096–1105

    PubMed  Google Scholar 

  8. 8.

    Catani F, Belvedere C, Ensini A, Feliciangeli A, Giannini S, Leardini A (2011) In-vivo knee kinematics in rotationally unconstrained total knee arthroplasty. J Orthop Res 29(10):1484–1490

    PubMed  Google Scholar 

  9. 9.

    Catani F, Ensini A, Belvedere C, Feliciangeli A, Benedetti MG, Leardini A, Giannini S (2009) In vivo kinematics and kinetics of a bi-cruciate substituting total knee arthroplasty: a combined fluoroscopic and gait analysis study. J Orthop Res 27(12):1569–1575

    PubMed  Google Scholar 

  10. 10.

    Catani F, Leardini A, Ensini A, Cucca G, Bragonzoni L, Toksvig-Larsen S, Giannini S (2004) The stability of the cemented tibial component of total knee arthroplasty: posterior cruciate retaining versus posterior-stabilized design. J Arthroplast 19(6):775–782

    Google Scholar 

  11. 11.

    El-Zayat BF, Heyse TJ, Fanciullacci N, Labey L, Fuchs-Winkelmann S, Innocenti B (2016) Fixation techniques and stem dimensions in hinged total knee arthroplasty: a finite element study. Arch Orthop Trauma Surg 136(12):1741–1752

    PubMed  Google Scholar 

  12. 12.

    Ewald FC, Jacobs MA, Miegel RE, Walker PS, Poss R, Sledge CB (1984) Kinematic total knee replacement. J Bone Jt Surg Am 66(7):1032–1040

    CAS  Google Scholar 

  13. 13.

    Godest AC, Beaugonin M, Haug E, Taylor M, Gregson PJ (2002) Simulation of a knee joint replacement during a gait cycle using explicit finite element analysis. J Biomech 35(2):267–275

    CAS  PubMed  Google Scholar 

  14. 14.

    Harner CD, Xerogeanes JW, Livesay GA, Carlin GJ, Smith GJ, Kusayama T, Kashiwaguchi S, Woo SL (1995) The human posterior cruciate ligament complex: an interdisciplinary study. Ligament morphology and biomechanical evaluation. Am J Sports Med 23(6):736–745

    CAS  PubMed  Google Scholar 

  15. 15.

    Hazratwala K, Matthews B, Wilkinson M, Barroso-Rosa S (2016) Total knee arthroplasty in patients with extra-articular deformity. Arthroplast Today. 2(1):26–36

    PubMed  PubMed Central  Google Scholar 

  16. 16.

    Heiner AD, Brown TD (2001) Structural properties of a new design of composite replicate femurs and tibias. J Biomech 34(6):773–781

    CAS  PubMed  Google Scholar 

  17. 17.

    In Y, Kim JM, Woo YK, Choi NY, Sohn JM, Koh HS (2009) Factors affecting flexion gap tightness in cruciate-retaining total knee arthroplasty. J Arthroplast 24(2):317–321

    Google Scholar 

  18. 18.

    Ingrassia T, Nalbone L, Nigrelli V, Tumino V, Ricotta V (2013) Finite element analysis of two total knee prostheses. Int J Interact Des Manuf 7(2):91–101

    Google Scholar 

  19. 19.

    Innocenti B, Bilgen ÖF, Labey L, van Lenthe GH, Sloten JV, Catani FC (2014) Load sharing and ligament strains in balanced, overstuffed and understuffed UKA. A validated finite element analysis. J Arthroplast 29(7):1491–1498

    Google Scholar 

  20. 20.

    Innocenti B, Bellemans J, Catani F (2016) Deviations from optimal alignment in TKA: is there a biomechanical difference between femoral or tibial component alignment? J Arthroplast 31(1):295–301

    Google Scholar 

  21. 21.

    Innocenti B, Pianigiani S, Labey L, Victor J, Bellemans J (2011) Contact forces in several TKA designs during squatting: a numerical sensitivity analysis. J Biomech 44(8):1573–1581

    PubMed  Google Scholar 

  22. 22.

    Innocenti B, Pianigiani S, Ramundo G, Thienpont E (2017) Biomechanical effects of different varus and valgus alignments in medial unicompartmental knee arthroplasty. J Arthroplast 31(12):2685–2691

    Google Scholar 

  23. 23.

    Innocenti B, Robledo H, Bernabe R, Pianigiani S (2015) Investigation on the effects induced by TKA features on tibio-femoral mechanics. Part I: femoral component designs. J Mech Med Biol 15(2):1540034

    Google Scholar 

  24. 24.

    Innocenti B, Salandra P, Pascale W, Pianigiani S (2016) How accurate and reproducible are the identification of cruciate and collateral ligament insertions using MRI? Knee 23(4):575–581

    PubMed  Google Scholar 

  25. 25.

    Innocenti B, Truyens E, Labey L, Wong P, Victor J, Bellemans J (2009) Can medio-lateral baseplate position and load sharing induce asymptomatic local bone resorption of the proximal tibia? A finite element study. J Orthop Surg Res 4:26

    PubMed  PubMed Central  Google Scholar 

  26. 26.

    Insall JN, Hood RW, Flawn LB, Sullivan DJ (1983) The total condylar knee prosthesis in gonarthrosis. A five to nine-year follow-up of the first one hundred consecutive replacements. J Bone Jt Surg Am 65(5):619–628

    CAS  Google Scholar 

  27. 27.

    Kelman GJ, Biden EN, Wyatt MP, Ritter MA, Colwell CW Jr (1999) Gait laboratory analysis of a posterior cruciate-sparing total knee arthroplasty in stair ascent and descent. Clin Orthop Relat Res 248:21–25

    Google Scholar 

  28. 28.

    Kim H, Pelker RR, Gibson DH, Irving JF, Lynch JK (1997) Rollback in posterior cruciate ligament-retaining total knee arthroplasty. A radiographic analysis. J Arthroplast 12(5):553–561

    CAS  Google Scholar 

  29. 29.

    Kwak SD, Ahmad CS, Gardner TR, Grelsamer RP, Henry JH, Blankevoort L, Ateshian GA, Mow VC (2000) Hamstrings and iliotibial band forces affect knee kinematics and contact pattern. J Orthop Res 18(1):101–108

    CAS  PubMed  Google Scholar 

  30. 30.

    Laskin RS, Maruyama Y, Villaneuva M, Bourne R (2000) Deep-dish congruent tibial component use in total knee arthroplasty: a randomized prospective study. Clin Orthop Relat Res 380:36–44

    Google Scholar 

  31. 31.

    Li G, Most E, Otterberg E, Sabbag K, Zayontz S, Johnson T, Rubash H (2002) Biomechanics of posterior-substituting total knee arthroplasty: an in vitro study. Clin Orthop Relat Res 404:214–225

    Google Scholar 

  32. 32.

    Luyckx T, Didden K, Vandenneucker H, Labey L, Innocenti B, Bellemans J (2009) Is there a biomechanical explanation for anterior knee pain in patients with patella alta? Influence of patellar height on patellofemoral contact force, contact area and contact pressure. J Bone Jt Surg (Br) 91(3):344–350

    CAS  Google Scholar 

  33. 33.

    Maniar R (2006) Rationale for the posterior-stabilized rotating platform knee. Orthopedics 29(9):S23–27

    PubMed  Google Scholar 

  34. 34.

    Mazzucchelli L, Deledda D, Rosso F, Ratto N, Bruzzone M, Bonasia DE, Rossi R (2016) Cruciate retaining and cruciate substituting ultra-congruent insert. Ann Transl Med 4(1):2

    PubMed  PubMed Central  Google Scholar 

  35. 35.

    Moskal JT, Capp SG (2014) Rotating-platform TKA no different from fixed-bearing TKA regarding survivorship or performance: a meta-analysis. Clin Orthop Relat Res 472:2185–2193

    PubMed  PubMed Central  Google Scholar 

  36. 36.

    Most E, Zayontz S, Li G, Otterberg E, Sabbag K, Rubash HE (2003) Femoral rollback after cruciate-retaining and stabilizing total knee arthroplasty. Clin Orthop Relat Res 410:101–113

    Google Scholar 

  37. 37.

    Nakayama K, Matsuda S, Miura H, Iwamoto Y, Higaki H, Otsuka K (2005) Contact stress at the post-cam mechanism in posterior-stabilised total knee arthroplasty. J Bone Jt Surg Br 87(4):483–488

    CAS  Google Scholar 

  38. 38.

    Paratte S, Pagnano MW, Trousdale RT, Berry DJ (2010) Effect of postoperative mechanical axis alignment on the fifteen-year survival of modern, cemented total knee replacements. J Bone Jt Surg Am 92(12):2143–2149

    Google Scholar 

  39. 39.

    Peters CL, Mulkey P, Erickson J, Anderson MB, Pelt CE (2014) Comparison of total knee arthroplasty with highly congruent anterior-stabilized bearings versus a cruciate-retaining design. Clin Orthop Relat Res 472:175–180

    PubMed  Google Scholar 

  40. 40.

    Pianigiani S, Alario Bernabé R, Robledo Yagüe H, Innocenti B (2015) Investigation on the effects induced by TKA features on tibio-femoral mechanics part II: tibial insert designs. J Mech Med Biol 15(2):1540035

    Google Scholar 

  41. 41.

    Pianigiani S, Chevalier Y, Labey L, Pascale V, Innocenti B (2012) Tibio-femoral kinematics in different total knee arthroplasty designs during a loaded squat: a numerical sensitivity study. J Biomech 45(13):2315–2323

    PubMed  Google Scholar 

  42. 42.

    Pianigiani S, Vander Sloten J, Pascale W, Labey L, Innocenti B (2015) A new graphical method to display data sets representing biomechanical knee behaviour. J Exp Orthop 2(1):18

    PubMed  PubMed Central  Google Scholar 

  43. 43.

    Ranawat CS, Komistek RD, Rodriguez JA, Dennis DA, Anderle M (2004) In vivo kinematics for fixed and mobile-bearing posterior stabilized knee prostheses. Clin Orthop Relat Res 418:184–190

    Google Scholar 

  44. 44.

    Ritter MA, Davis KE, Meding JB, Pierson JL, Berend ME, Malinzak RA (2011) The effect of alignment and BMI on failure of total knee replacement. J Bone Jt Surg Am 93(17):1588–1596

    Google Scholar 

  45. 45.

    Rodriguez JA, Bhende H, Ranawat CS (2001) Total condylar knee replacement: a 20-year followup study. Clin Orthop Relat Res 388:10–17

    Google Scholar 

  46. 46.

    Sarathi Kopparti P, Lewis G (2007) Influence of three variables on the stresses in a three-dimensional model of a proximal tibia-total knee implant construct. Biomed Mater Eng 17(1):19–28

    PubMed  Google Scholar 

  47. 47.

    Schultz RA, Miller DC, Kerr CS, Micheli L (1984) Mechanoreceptors in human cruciate ligaments. A histological study. J Bone Jt Surg Am 66(7):1072–1076

    CAS  Google Scholar 

  48. 48.

    Sobieraj MC, Rimnac CM (2009) Ultra high molecular weight polyethylene: mechanics, morphology, and clinical behavior. J Mech Behav Biomed Mater 2(5):433–443

    CAS  PubMed  Google Scholar 

  49. 49.

    Soenen M, Baracchi M, De Corte R, Labey L, Innocenti B (2013) Stemmed TKA in a femur with a total hip arthroplasty: is there a safe distance between the stem tips? J Arthroplast 28(8):1437–1445

    Google Scholar 

  50. 50.

    Stern SH, Insall JN (1992) Posterior stabilized prosthesis. Results after follow-up of nine to twelve years. J Bone Jt Surg Am 74(7):980–986

    CAS  Google Scholar 

  51. 51.

    Stronach BM, Adams JC, Jones LC, Farrell SM, Hydrick JM (2019) The effect of sacrificing the posterior cruciate ligament in total knee arthroplasties that use a highly congruent polyethylene component. J Arthroplast 34(2):286–289

    Google Scholar 

  52. 52.

    Vaninbroukx M, Labey L, Innocenti B, Bellemans J (2009) Cementing the femoral component in total arthroplasty: which technique is the best? Knee 16(4):265–268

    PubMed  Google Scholar 

  53. 53.

    Vanlommel J, Luyckx JP, Labey L, Innocenti B, De Corte R, Bellemans J (2011) Cementing the tibial component in total knee arthroplasty: which technique is the best? J Arthroplast 26(3):492–496

    Google Scholar 

  54. 54.

    Victor J, Banks S, Bellemans J (2005) Kinematics of posterior cruciate ligament-retaining and -substituting total knee arthroplasty: a prospective randomised outcome study. J Bone Jt Surg Br 87-B:646–655

    Google Scholar 

  55. 55.

    Victor J, Labey L, Wong P, Innocenti B, Bellemans J (2010) The Influence of muscle load on tibio-femoral knee kinematics. J Orthop Res 28(4):419–428

    PubMed  Google Scholar 

  56. 56.

    Victor J, Van Doninck D, Labey L, Innocenti B, Parizel PM, Bellemans J (2009) How precise can bony landmarks be determined on a CT scan of the knee? Knee 16(5):358–365

    CAS  PubMed  Google Scholar 

  57. 57.

    Victor J, Van Glabbeek F, Vander Sloten J, Parizel PM, Somville J, Bellemans J (2009) An experimental model for kinematic analysis of the knee. J Bone Jt Surg Am 91(Suppl 6):150–163

    Google Scholar 

  58. 58.

    Waanders D, Janssen D, Mann K, Verdonschot N (2010) The mechanical effects of different levels of cement penetration at the cement–bone interface. J Biomech 43(6):1167–1175

    PubMed  PubMed Central  Google Scholar 

  59. 59.

    Walker PS, Sussman-Fort JM, Yildirim G, Boyer J (2009) Design features of total knees for achieving normal knee motion characteristics. J Arthroplast 24(3):475–483

    Google Scholar 

  60. 60.

    Wang H, Simpson KJ, Ferrara MS, Chamnongkich S, Kinsey T, Mahoney OM (2006) Biomechanical differences exhibited during sit-to-stand between total knee arthroplasty designs of varying radii. J Arthroplast 21(8):1193–1199

    Google Scholar 

Download references

Acknowledgements

The author would like to thank Mr. Edoardo Bori for his precious help during the writing of the study.

Funding

This work was supported by FNRS (Fonds National de la Recherche Scientifique): CDR 19545501 and CDR 29155446 and by FER ULB (Fonds d’Encouragement à la Recherche): FER 2014 and FER 2017. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Bernardo Innocenti.

Ethics declarations

Conflict of interest

The author is a paid consultant and receive research support from Link Orthopaedic.

Ethical approval

NA, No IRB approval is needed for this study.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Innocenti, B. High congruency MB insert design: stabilizing knee joint even with PCL deficiency. Knee Surg Sports Traumatol Arthrosc 28, 3040–3047 (2020). https://doi.org/10.1007/s00167-019-05764-0

Download citation

Keywords

  • Insert design
  • Biomechanics
  • TKA
  • PCL
  • Kinematics
  • Contact pressure