Inclination of Blumensaat’s line influences on the accuracy of the quadrant method in evaluation for anterior cruciate ligament reconstruction

Abstract

Purpose

The quadrant method is used to evaluate the bone tunnel position with the grid based on the Blumensaat’s line in anterior cruciate ligament (ACL) reconstruction. This study aimed to clarify the influence of variation in the Blumensaat’s line on the accuracy of the quadrant method measurements.

Methods

A retrospective review of the radiological records of patients aged 18–30 years who underwent computed tomography (CT) scanning of the knee joint was conducted. The Blumensaat’s line inclination angle (BIA), along with the most posterior point of the posterior condyle (point P) position using the quadrant method and morphology of the Blumensaat’s line were measured on true lateral transparent three-dimensional CT images of the distal femoral condyle in 147 patients. Statistical analysis was conducted to determine associations among these measurements.

Results

BIA was 37.5° (standard deviation 4.2°; range 27°–48°). The point P position was significantly correlated with BIA in the high/low (R2 = 0.590, P < 0.0001) and deep/shallow (R2 = 0.461, P < 0.0001) directions. The morphology of the Blumensaat’s line was straight in 35 knees (23.8%); whereas, the remaining 112 knees (76.2%) were not straight but had some hill on the Blumensaat’s line. No significant difference among the morphological variation of the Blumensaat’s line was observed in BIA and the point P position.

Conclusion

There was a strong correlation between BIA and the point P measured using the quadrant method, suggesting the influence of the Blumensaat’s line on the accuracy of the quadrant method measurements in ACL reconstruction. As for the clinical relevance, surgeons should be careful in application of the quadrant method for ACL reconstruction, because the variation of the Blumensaat’s line inclination influences the accuracy of this method.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  1. 1.

    Al-Saeed O, Brown M, Athyal R, Sheikh M (2013) Association of femoral intercondylar notch morphology, width index and the risk of anterior cruciate ligament injury. Knee Surg Sports Traumatol Arthrosc 21:678–682

    Article  Google Scholar 

  2. 2.

    Amis AA, Jakob RP (1998) Anterior cruciate ligament graft positioning, tensioning and twisting. Knee Surg Sports Traumatol Arthrosc 6:S2–S12

    Article  Google Scholar 

  3. 3.

    Anderson AF, Lipscomb AB, Liudahl KJ, Addlestone RB (1987) Analysis of the intercondylar notch by computed tomography. Am J Sports Med 15:547–552

    CAS  Article  Google Scholar 

  4. 4.

    Bernard M, Hertel P (1996) Intraoperative and postoperative insertion control of anterior cruciate ligament-plasty. A radiologic measuring method (quadrant method). Unfallchirurg 99:332–340

    CAS  Google Scholar 

  5. 5.

    Bernard M, Hertel P, Hornung H, Cierpinski T (1997) Femoral insertion of the ACL. Radiographic quadrant method. Am J Knee Surg 10:14–21 (discussion 21-12)

    CAS  Google Scholar 

  6. 6.

    Bouras T, Fennema P, Burke S, Bosman H (2018) Stenotic intercondylar notch type is correlated with anterior cruciate ligament injury in female patients using magnetic resonance imaging. Knee Surg Sports Traumatol Arthrosc 26:1252–1257

    Google Scholar 

  7. 7.

    Buzzi R, Zaccherotti G, Giron F, Aglietti P (1999) The relationship between the intercondylar roof and the tibial plateau with the knee in extension: relevance for tibial tunnel placement in anterior cruciate ligament reconstruction. Arthroscopy 15:625–631

    CAS  Article  Google Scholar 

  8. 8.

    Cole J, Brand JC Jr, Caborn DN, Johnson DL (2000) Radiographic analysis of femoral tunnel position in anterior cruciate ligament reconstruction. Am J Knee Surg 13:218–222

    CAS  Google Scholar 

  9. 9.

    Colombet P, Robinson J, Christel P, Franceschi JP, Djian P, Bellier G et al (2006) Morphology of anterior cruciate ligament attachments for anatomic reconstruction: a cadaveric dissection and radiographic study. Arthroscopy 22:984–992

    Article  Google Scholar 

  10. 10.

    Forsythe B, Kopf S, Wong AK, Martins CA, Anderst W, Tashman S et al (2010) The location of femoral and tibial tunnels in anatomic double-bundle anterior cruciate ligament reconstruction analyzed by three-dimensional computed tomography models. J Bone Jt Surg Am 92:1418–1426

    Article  Google Scholar 

  11. 11.

    Inderhaug E, Larsen A, Strand T, Waaler PA, Solheim E (2016) The effect of feedback from post-operative 3D CT on placement of femoral tunnels in single-bundle anatomic ACL reconstruction. Knee Surg Sports Traumatol Arthrosc 24:154–160

    Article  Google Scholar 

  12. 12.

    Inoue M, Tokuyasu S, Kuwahara S, Yasojima N, Kasahara Y, Kondo E et al (2010) Tunnel location in transparent 3-dimensional CT in anatomic double-bundle anterior cruciate ligament reconstruction with the trans-tibial tunnel technique. Knee Surg Sports Traumatol Arthrosc 18:1176–1183

    Article  Google Scholar 

  13. 13.

    Iriuchishima T, Ryu K, Aizawa S, Fu FH (2016) Blumensaat’s line is not always straight: morphological variations of the lateral wall of the femoral intercondylar notch. Knee Surg Sports Traumatol Arthrosc 24:2752–2757

    Article  Google Scholar 

  14. 14.

    Jacobsen K, Bertheussen K, Gjerloff CC (1974) Characteristics of the line of Blumensaat. An experimental analysis. Acta Orthop Scand 45:764–771

    CAS  Article  Google Scholar 

  15. 15.

    Khalfayan EE, Sharkey PF, Alexander AH, Bruckner JD, Bynum EB (1996) The relationship between tunnel placement and clinical results after anterior cruciate ligament reconstruction. Am J Sports Med 24:335–341

    CAS  Article  Google Scholar 

  16. 16.

    Kim DH, Lim WB, Cho SW, Lim CW, Jo S (2016) Reliability of 3-dimensional computed tomography for application of the bernard quadrant method in femoral tunnel position evaluation after anatomic anterior cruciate ligament reconstruction. Arthroscopy 32:1660–1666

    Article  Google Scholar 

  17. 17.

    Kopf S, Forsythe B, Wong AK, Tashman S, Anderst W, Irrgang JJ et al (2010) Nonanatomic tunnel position in traditional transtibial single-bundle anterior cruciate ligament reconstruction evaluated by three-dimensional computed tomography. J Bone Jt Surg Am 92:1427–1431

    Article  Google Scholar 

  18. 18.

    Lee S, Kim H, Jang J, Seong SC, Lee MC (2012) Intraoperative correlation analysis between tunnel position and translational and rotational stability in single- and double-bundle anterior cruciate ligament reconstruction. Arthroscopy 28:1424–1436

    Article  Google Scholar 

  19. 19.

    Lertwanich P, Martins CA, Asai S, Ingham SJ, Smolinski P, Fu FH (2011) Anterior cruciate ligament tunnel position measurement reliability on 3-dimensional reconstructed computed tomography. Arthroscopy 27:391–398

    Article  Google Scholar 

  20. 20.

    Luites JWH, Verdonschot N (2017) Radiographic positions of femoral ACL, AM and PL centres: accuracy of guidelines based on the lateral quadrant method. Knee Surg Sports Traumatol Arthrosc 25:2321–2329

    Article  Google Scholar 

  21. 21.

    Moloney G, Araujo P, Rabuck S, Carey R, Rincon G, Zhang X et al (2013) Use of a fluoroscopic overlay to assist arthroscopic anterior cruciate ligament reconstruction. Am J Sports Med 41:1794–1800

    Article  Google Scholar 

  22. 22.

    Musahl V (2005) Varying femoral tunnels between the anatomical footprint and isometric positions: effect on kinematics of the anterior cruciate ligament-reconstructed knee. Am J Sports Med 33:712–718

    Article  Google Scholar 

  23. 23.

    Paley D (2002) Principles of deformity correction. Springer, Berlin

    Google Scholar 

  24. 24.

    Parkinson B, Robb C, Thomas M, Thompson P, Spalding T (2017) Factors that predict failure in anatomic single-bundle anterior cruciate ligament reconstruction. Am J Sports Med 45:1529–1536

    Article  Google Scholar 

  25. 25.

    Piefer JW, Pflugner TR, Hwang MD, Lubowitz JH (2012) Anterior cruciate ligament femoral footprint anatomy: systematic review of the 21st century literature. Arthroscopy 28:872–881

    Article  Google Scholar 

  26. 26.

    Sadoghi P, Kropfl A, Jansson V, Muller PE, Pietschmann MF, Fischmeister MF (2011) Impact of tibial and femoral tunnel position on clinical results after anterior cruciate ligament reconstruction. Arthroscopy 27:355–364

    Article  Google Scholar 

  27. 27.

    Samora W, Beran MC, Parikh SN (2016) Intercondylar roof inclination angle: is it a risk factor for ACL tears or tibial spine fractures? J Pediatr Orthop 36:e71–e74

    Article  Google Scholar 

  28. 28.

    Scheffel PT, Henninger HB, Burks RT (2013) Relationship of the intercondylar roof and the tibial footprint of the ACL: implications for ACL reconstruction. Am J Sports Med 41:396–401

    Article  Google Scholar 

  29. 29.

    Shafizadeh S, Balke M, Kelz S, Hoeher J, Banerjee M (2014) Low inter- and intraobserver variability allows for reliable tunnel measurement in ACL reconstruction using the quadrant method. Arch Orthop Trauma Surg 134:529–536

    Article  Google Scholar 

  30. 30.

    Siebold R, Ellert T, Metz S, Metz J (2008) Femoral Insertions of the anteromedial and posterolateral bundles of the anterior cruciate ligament: morphometry and arthroscopic orientation models for double-bundle bone tunnel placement—a cadaver study. Arthroscopy 24:585–592

    Article  Google Scholar 

  31. 31.

    Sommer C, Friederich NF, Muller W (2000) Improperly placed anterior cruciate ligament grafts: correlation between radiological parameters and clinical results. Knee Surg Sports Traumatol Arthrosc 8:207–213

    CAS  Article  Google Scholar 

  32. 32.

    Tsuda E, Ishibashi Y, Fukuda A, Yamamoto Y, Tsukada H, Ono S (2010) Tunnel position and relationship to postoperative knee laxity after double-bundle anterior cruciate ligament reconstruction with a transtibial technique. Am J Sports Med 38:698–706

    Article  Google Scholar 

  33. 33.

    van Eck CF, Martins CA, Vyas SM, Celentano U, van Dijk CN, Fu FH (2010) Femoral intercondylar notch shape and dimensions in ACL-injured patients. Knee Surg Sports Traumatol Arthrosc 18:1257–1262

    Article  Google Scholar 

  34. 34.

    Yahagi Y, Iriuchishima T, Horaguchi T, Suruga M, Tokuhashi Y, Aizawa S (2018) The importance of Blumensaat’s line morphology for accurate femoral ACL footprint evaluation using the quadrant method. Knee Surg Sports Traumatol Arthrosc 26:455–461

    Article  Google Scholar 

  35. 35.

    Yasuda K, Kondo E, Ichiyama H, Kitamura N, Tanabe Y, Tohyama H et al (2004) Anatomic reconstruction of the anteromedial and posterolateral bundles of the anterior cruciate ligament using hamstring tendon grafts. Arthroscopy 20:1015–1025

    Article  Google Scholar 

  36. 36.

    Yasuda K, Kondo E, Ichiyama H, Tanabe Y, Tohyama H (2006) Clinical evaluation of anatomic double-bundle anterior cruciate ligament reconstruction procedure using hamstring tendon grafts: comparisons among 3 different procedures. Arthroscopy 22:240–251

    Article  Google Scholar 

  37. 37.

    Zantop T, Diermann N, Schumacher T, Schanz S, Fu FH, Petersen W (2008) Anatomical and non-anatomical double-bundle anterior cruciate ligament reconstruction: importance of femoral tunnel location on knee kinematics. Am J Sports Med 36:678–685

    Article  Google Scholar 

  38. 38.

    Zavras TD, Race A, Amis AA (2005) The effect of femoral attachment location on anterior cruciate ligament reconstruction: graft tension patterns and restoration of normal anterior-posterior laxity patterns. Knee Surg Sports Traumatol Arthrosc 13:92–100

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank the staff at Department of Orthopaedic Surgery in NTT East Japan Sapporo Hospital for their contribution to this clinical study.

Funding

This study was financially supported by a graft from NTT East Japan Sapporo Hospital.

Author information

Affiliations

Authors

Contributions

KI collected the data, made the analysis and drafted the work. MI conducted this study, supervised the data analysis and completed the draft. YK supported the data collection. KT and HK contributed to taking special CT images. IY advised the statistical analysis. EK, NI and KY interpreted the data and revised the draft critically.

Corresponding author

Correspondence to Koji Iwasaki.

Ethics declarations

Conflict of interest

The authors declare no conflicts of interest associated with this manuscript.

Ethical approval

Ethical approval was given by Institutional review board (IRB) of Hokkaido University Hospital (IRB number, 017-063).

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Iwasaki, K., Inoue, M., Kasahara, Y. et al. Inclination of Blumensaat’s line influences on the accuracy of the quadrant method in evaluation for anterior cruciate ligament reconstruction. Knee Surg Sports Traumatol Arthrosc 28, 1885–1893 (2020). https://doi.org/10.1007/s00167-019-05619-8

Download citation

Keywords

  • Anterior cruciate ligament reconstruction
  • Quadrant method
  • Blumensaat's line
  • Bone tunnel position
  • Computed tomography