Skip to main content
Log in

MRI for high ankle sprains with an unstable syndesmosis: posterior malleolus bone oedema is common and time to scan matters

  • ANKLE
  • Published:
Knee Surgery, Sports Traumatology, Arthroscopy Aims and scope

Abstract

Purpose

Early clinical examination combined with MRI allows accurate diagnosis of syndesmosis instability after a high ankle sprain. However, patients often present late. The aims of the current study were to describe MRI characteristics associated with syndesmosis instability and to test the hypothesis that MRI patterns would differ according to time from injury.

Methods

Over a 5-year period, 164 consecutive patients who had arthroscopically proven syndesmosis instability requiring fixation were retrospectively studied. Patients with distal fibula fractures were not included. Injuries were classified as acute in 108 patients (< 6 weeks), intermediate in 32 (6–12 weeks) and chronic in 24 patients (> 12 weeks).

Results

Posterior malleolus bone oedema was noted in 65 (60.2%), and posterior malleolus fracture in 17 (15.7%) of acute patients, respectively, which did not significantly differ over time. According to MRI, reported rates of posterior syndesmosis disruption significantly differed over time, observed in 101 (93.5%), 28 (87.5%) and 13 (54.2%) of acute, intermediate and chronic patients, respectively (p < 0.001). Apparent rates of PITFL injury significantly reduced with time (p < 0.001).

Conclusions

MRI detected a posterior syndesmosis injury in 93.5% of patients acutely but became less reliable with time. The clinical relevance of this study is that posterior malleolus bone oedema may be the only marker of a complete syndesmosis injury and can help clinically identify those injuries which require arthroscopic assessment for instability. If suspicious of a high ankle sprain, we advocate early MRI assessment to help determine stable versus unstable injuries as MRI becomes less reliable after 12 weeks.

Level of evidence

III.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

MRI:

Magnetic resonance imaging

AITFL:

Anterior inferior tibio-fibular ligament

IOL:

Intra-osseous ligament

PITFL:

Posterior inferior tibio-fibular ligament

IQR:

Interquartile range

ATFL:

Anterior talo-fibular ligament

CFL:

Calcaneo-fibular ligament

PTFL:

Posterior talo-fibular ligament

References

  1. Beumer A, Heijboer RP, Fontijne WP, Swierstra BA (2000) Late reconstruction of the anterior distal tibiofibular syndesmosis: good outcome in 9 patients. Acta Orthop Scand 71(5):519–521

    Article  CAS  PubMed  Google Scholar 

  2. Beumer A, van Hemert WL, Niesing R, Entius CA, Ginai AZ, Mulder PG, Swierstra BA (2004) Radiographic measurement of the distal tibiofibular syndesmosis has limited use. Clin Orthop Relat Res 423:227–234

    Article  Google Scholar 

  3. Bonin JG (1950) Injuries to the ankle. William Heinemann Medical Books Ltd, London, pp 248–260

    Google Scholar 

  4. Boytim MJ, Fischer DA, Neumann L (1991) Syndesmotic ankle sprains. Am J Sports Med 19:294–298

    Article  CAS  PubMed  Google Scholar 

  5. Brown KW, Morrison WE, Schwetzer ME, Parellada A, Nothnagel H (2004) MRI findings associated with distal tibiofibular syndesmosis injuries. Am J Roentgenol 182:131–136

    Article  Google Scholar 

  6. Calder JD, Bamford R, Petrie A, McCollum GA (2016) Stable versus unstable grade II high ankle sprains: a prospective study predicting the need for surgical stabilization and time to return to sports. Arthroscopy 32(4):634–642

    Article  PubMed  Google Scholar 

  7. Calder J, Mitchell A, Lomax A, Ballal MS, Grice J, van Dijk CN, Lee J (2017) The broken “ring of fire”: a new radiological sign as predictor of syndesmosis injury? Orthop J Sports Med 5(3):2325967117695064

    Article  PubMed  PubMed Central  Google Scholar 

  8. Clanton TO, Ho CP, Williams BT, Surowiec RK, Gatlin CC, Haytmanek CT, LaPrade RF (2016) Magnetic resonance imaging characterization of individual ankle syndesmosis structures in asymptomatic and surgically treated cohorts. Knee Surg Sports Traumatol Arthrosc 24(7):2089–2102

    Article  PubMed  Google Scholar 

  9. Clanton TO, Williams BT, Backus JD, Dornan GJ, Liechti DJ, Whitlow SR, Saroki AJ, Turnbull TL, LaPrade RF (2017) Biomechanical analysis of the individual ligament contributions to syndesmotic stability. Foot Ankle Int 38(1):66–75

    Article  PubMed  Google Scholar 

  10. Forschner PF, Beitzel K, Imhoff AB, Buchmann S, Feuerriegel G, Hofmann F et al (2017) Five-year outcomes after treatment for acute instability of the tibiofibular syndesmosis using a suture-button fixation system. Orthop J Sports Med 5(4):2325967117702854

    Article  PubMed  PubMed Central  Google Scholar 

  11. Gardner MJ, Brodsky A, Briggs SM, Nielson JH, Lorich DG (2006) Fixation of posterior malleolar fractures provides greater syndesmotic stability. Clin Orthop Relat Res 447:165–171

    Article  PubMed  Google Scholar 

  12. Gerber JP, Williams GN, Scoville CR, Arciero RA, Taylor DC (1998) Persistent disability associated with ankle sprains: a prospective examination of an athletic population. Foot Ankle Int 19(10):653–660

    Article  CAS  PubMed  Google Scholar 

  13. Han SH, Lee JW, Kim S, Suh JS, Choi YR (2007) Chronic tibiofibular syndesmosis injury: the diagnostic efficiency of magnetic resonance imaging and comparative analysis of operative treatment. Foot Ankle Int 28(3):336–342

    Article  PubMed  Google Scholar 

  14. Harper MC (2001) Delayed reduction and stabilization of the tibiofibular syndesmosis. Foot Ankle Int 22(1):15–18

    Article  CAS  PubMed  Google Scholar 

  15. Hermans JJ, Ginai AZ, Wentink N, Hop WC, Beumer A (2011) The additional value of an oblique image plane for MRI of the anterior and posterior distal tibiofibular syndesmosis. Skelet Radiol 40(1):75–83

    Article  Google Scholar 

  16. Hopkinson WJ, St Peirre P, Ryan JB, Wheeler JH (1990) Syndesmosis sprains of the ankle. Foot Ankle 10(6):325–330

    Article  CAS  PubMed  Google Scholar 

  17. Howard DR, Rubin DA, Hillen TJ, Nissman DB, Lomax J et al (2012) Magnetic resonance imaging as a predictor of return to play following syndesmosis (high) ankle sprains in professional football players. Sports Health 4(6):535–543

    Article  PubMed  PubMed Central  Google Scholar 

  18. Lubberts B, Guss D, Vopat BG, Johnson AH, van Dijk CN, Lee H, DiGiovanni CW (2018) The arthroscopic syndesmotic assessment tool can differentiate between stable and unstable ankle syndesmoses. Knee Surg Sports Traumatol Arthrosc. https://doi.org/10.1007/s00167-018-5229-3

    Article  PubMed  Google Scholar 

  19. McCollum GA, van den Bekerom MP, Kerkhoffs GM, Calder JD, van Dijk CN (2013) Syndesmosis and deltoid ligament injuries in the athlete. Knee Surg Sports Traumatol Arthrosc 21(6):1328–1337

    Article  PubMed  Google Scholar 

  20. Muhl C, Frank LR, Rand T (1998) Tibiofibular syndesmosis: high resolution MRI using a local gradient coil. J Comput Assist Tomogr 22:938–944

    Article  Google Scholar 

  21. Nielson JH, Gardner MJ, Peterson MG, Sallis JG, Potter HG, Helfet DL, Lorich DG (2005) Radiographic measurements do not predict syndesmotic injury in ankle fractures: an MRI study. Clin Orthop Relat Res 436:216–221

    Article  Google Scholar 

  22. Nussbaum ED, Hosea TM, Sieler SD, Incremona BR, Kessler DE (2001) Prospective evaluation of syndesmotic ankle sprains without diastasis. Am J Sports Med 29(1):31–35

    Article  CAS  PubMed  Google Scholar 

  23. Oae K, Takao M, Naito K, Uchio Y, Kono T, Ishida J, Ochi M (2003) Injury of the tibiofibular syndesmosis: value of MR imaging for diagnosis. Radiology 227(1):155–161

    Article  PubMed  Google Scholar 

  24. Ogilvie-Harris DJ, Reed SC, Hedman TP (1994) Disruption of the ankle syndesmosis: biomechanical study of the ligamentous restraints. Arthroscopy 10(5):558–560

    Article  CAS  PubMed  Google Scholar 

  25. Rammelt S, Zwipp H, Grass R (2008) Injuries to the distal tibiofibular syndesmosis: an evidence-based approach to acute and chronic lesions. Foot Ankle Clin 13(4):611–633

    Article  PubMed  Google Scholar 

  26. Rios AM, Rosenberg ZS, Bencardino JT, Rodrigo SP, Theran SG (2011) Bone marrow edema patterns in the ankle and hindfoot: distinguishing MRI features. Am J Roentgenol 197(4):W720–W729

    Article  Google Scholar 

  27. Sikka RS, Fetzer GB, Sugarman E, Wright RW, Fritts H, Boyd JL, Fischer DA (2012) Correlating MRI findings with disability in syndesmotic sprains of NFL players. Foot Ankle Int 33(5):371–378

    Article  PubMed  Google Scholar 

  28. Sman AD, Hiller CE, Rae K, Linklater J, Black DA, Nicholson LL, Burns J, Refshauge KM (2015) Diagnostic accuracy of clinical tests for ankle syndesmosis injury. Br J Sports Med 49(5):323–329

    Article  PubMed  Google Scholar 

  29. Sman AD, Hiller CE, Refshauge KM (2013) Diagnostic accuracy of clinical tests for diagnosis of ankle syndesmosis injury: a systematic review. Br J Sports Med 47(10):620–628

    Article  PubMed  Google Scholar 

  30. Takao M, Ochi M, Oae K, Naito K, Uchio Y (2003) Diagnosis of a tear of the tibiofibular syndesmosis. The role of arthroscopy of the ankle. J Bone Jt Surg Br 85(3):324–329

    Article  CAS  Google Scholar 

  31. Takao M, Ochi M, Naito K, Iwata A, Kawasaki K, Tobita M, Miyamoto W, Oae K (2001) Arthroscopic diagnosis of tibiofibular syndesmosis disruption. Arthroscopy 17(8):836–843

    Article  CAS  PubMed  Google Scholar 

  32. Taylor DC, Englehardt DL, Bassett FH (1992) Syndesmosis sprains of the ankle: the influence of heterotopic ossification. Am J Sports Med 20:146–150

    Article  CAS  PubMed  Google Scholar 

  33. Turky M, Menon KV, Saeed K (2018) Arthroscopic grading of injuries of the inferior tibiofibular syndesmosis. J Foot Ankle Surg 57(6):1125–1129

    Article  PubMed  Google Scholar 

  34. Van den Bekerom MP, Raven EE (2007) The distal fascicle of the anterior inferior tibiofibular ligament as a cause of tibiotalar impingement syndrome: a current concepts review. Knee Surg Sports Traumatol Arthrosc 15:465–471

    Article  PubMed  PubMed Central  Google Scholar 

  35. van Dijk CN, Longo UQ, Loppini M, Florio P, Maltese L, Ciuffreda M, Denaro V (2016) Classification and diagnosis of acute isolated syndesmotic injuries: ESSKA-AFAS consensus guidelines. Knee Surg Sports Traumatol Arthrosc 24(4):1200–1216

    Article  PubMed  Google Scholar 

  36. van Dijk CN, Longo UQ, Loppini M, Florio P, Maltese L, Ciuffreda M, Denaro V (2016) Conservative and surgical management of acute isolated syndesmotic injuries: ESSKA-AFAS consensus guidelines. Knee Surg Sports Traumatol Arthrosc 24(4):1217–1227

    Article  PubMed  Google Scholar 

  37. Warner SJ, Garner MR, Schottel PC, Hinds RM, Loftus ML, Lorich DG (2015) Analysis of PITFL injuries in rotationally unstable ankle fractures. Foot Ankle Int 36(4):377–382

    Article  PubMed  Google Scholar 

  38. Whiteside LA, Reynolds FC, Ellsasser JC (1978) Tibiofibular synostosis and recurrent ankle sprains in high performance athletes. Am J Sports Med 6(4):204–208

    Article  CAS  PubMed  Google Scholar 

  39. Wright RW, Barile RJ, van den Bekerom MP, Raven EE (2007) The distal fascicle of the anterior inferior tibiofibular ligament as a cause of tibiotalar impingement syndrome: a current concepts review. Knee Surg Sports Traumatol Arthrosc 15(4):465–471

    Article  Google Scholar 

Download references

Acknowledgements

We would like to thank Satomi Okana for assisting in the data analysis, and Wesley Medical Research for funding costs towards statistical support.

Funding

Funding was provided by Wesley Medical Research.

Author information

Authors and Affiliations

Authors

Contributions

MR carried out data collection and writing of manuscript. DM carried out the ethics application, data collection and writing of manuscript. EB participated in study design, performed data analysis and contributed to writing of manuscript. BF conceived the study, participated in the study design and writing of manuscript. ML conceived the study, participated in the study design and writing of manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Matthew Randell.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

Ethics approval was obtained from the Uniting Health Care, Wesley Hospital, Ethics and 105 Review committee, approval number 2017.22.236.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Randell, M., Marsland, D., Ballard, E. et al. MRI for high ankle sprains with an unstable syndesmosis: posterior malleolus bone oedema is common and time to scan matters. Knee Surg Sports Traumatol Arthrosc 27, 2890–2897 (2019). https://doi.org/10.1007/s00167-019-05581-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00167-019-05581-5

Keywords

Navigation