Skip to main content
Log in

Preoperative laxity in ACL-deficient knees increases with posterior tibial slope and medial meniscal tears

  • KNEE
  • Published:
Knee Surgery, Sports Traumatology, Arthroscopy Aims and scope

Abstract

Purpose

The aim of this study was to determine patient and anatomic factors that influence anteroposterior and rotational laxity in knees with ACL tears. Based on the findings of biomechanical studies, we hypothesized that static and dynamic anterior tibial translation (ATT) as well as positive pivot shift would increase with female gender, tibial slope, and meniscal tears.

Methods

The authors prospectively collected preoperative data and intraoperative findings of 417 patients that underwent ACL reconstruction. The exclusion criteria were: revision ACL procedures (n = 53), other surgical antecedents (n = 27), prior osteotomies (n = 7) or concomitant ligament tears on the ipsilateral knee (n = 34), and history of ACL tears in the contralateral knee (n = 45), leaving a study cohort of 251 patients. Their preoperative anteroposterior knee laxity was assessed objectively using ‘static’ monopodal weight-bearing radiographs and ‘dynamic’ instrumented differential measurements of ATT. Rotational laxity was assessed subjectively using the pivot shift test.

Results

Multivariable regression showed that static ATT increases only with tibial slope (β = 0.30; p < 0.001), but dynamic ATT increases with tibial slope (β = 0.19; p = 0.041), medial meniscal tears (β = 1.27; p = 0.007), complete ACL tears (β = 2.06; p < 0.001), and to decrease with age (β = − 0.09; p < 0.001). Multivariable regression also indicated that high-grade pivot shift decreases with age (OR 0.94; p < 0.001) and for women (OR 0.25; p < 0.001), and to be higher for knees with complete ACL tears (OR 3.04; p = 0.002) or medial meniscal tears (OR 2.28; p = 0.010).

Conclusion

Contrary to expectations based on biomechanical studies, static ATT was only affected by high posterior tibial slope, while dynamic ATT was affected by both high posterior tibial slopes and medial meniscal tears, but not by gender or lateral meniscal tears. Likewise, pivot shift was affected by gender and medial meniscal tears, but not lateral meniscal tears or posterior tibial slope. These findings are relevant to guide surgeons in optimizing their surgical procedures, such as conserving the menisci when possible, and rehabilitation protocols, by delaying full weight-bearing and return to sports in patients with anatomic and lesional risk factors.

Level of evidence

Cohort study, Level IV.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

ATT:

Anterior tibial translation

PST:

Pivot shift test

MRI:

Magnetic resonance image

BMI:

Body mass index

SSD:

Side-to-side difference

IKDC:

International Knee Documentation Committee

SPV:

Subject per variable

References

  1. Ahmed I, Salmon L, Roe J, Pinczewski L (2017) The long-term clinical and radiological outcomes in patients who suffer recurrent injuries to the anterior cruciate ligament after reconstruction. Bone Joint J 99-b(3):337–343

    Article  PubMed  CAS  Google Scholar 

  2. Ahn JH, Bae TS, Kang KS, Kang SY, Lee SH (2011) Longitudinal tear of the medial meniscus posterior horn in the anterior cruciate ligament-deficient knee significantly influences anterior stability. Am J Sports Med 39(10):2187–2193

    Article  PubMed  Google Scholar 

  3. Ali AA, Harris MD, Shalhoub S, Maletsky LP, Rullkoetter PJ, Shelburne KB (2017) Combined measurement and modeling of specimen-specific knee mechanics for healthy and ACL-deficient conditions. J Biomech 57:117–124

    Article  PubMed  PubMed Central  Google Scholar 

  4. Austin PC, Steyerberg EW (2015) The number of subjects per variable required in linear regression analyses. J Clin Epidemiol 68(6):627–636

    Article  PubMed  Google Scholar 

  5. Beldame J, Mouchel S, Bertiaux S, Adam JM, Mouilhade F, Roussignol X, Dujardin F (2012) Anterior knee laxity measurement: comparison of passive stress radiographs Telos((R)) and “Lerat”, and GNRB((R)) arthrometer. Orthop Traumatol Surg Res 98(7):744–750

    Article  PubMed  CAS  Google Scholar 

  6. Borgstrom PH, Markolf KL, Wang Y, Xu X, Yang PR, Joshi NB, Yeranosian MG, Petrigliano FA, Hame SL, Kaiser WJ, McAllister DR (2015) Use of inertial sensors to predict pivot-shift grade and diagnose an ACL injury during preoperative testing. Am J Sports Med 43(4):857–864

    Article  PubMed  Google Scholar 

  7. Christensen JJ, Krych AJ, Engasser WM, Vanhees MK, Collins MS, Dahm DL (2015) Lateral tibial posterior slope is increased in patients with early graft failure after anterior cruciate ligament reconstruction. Am J Sports Med 43(10):2510–2514

    Article  PubMed  Google Scholar 

  8. Colombet P, Dejour D, Panisset JC, Siebold R (2010) Current concept of partial anterior cruciate ligament ruptures. Orthop Traumatol Surg Res 96(8 Suppl):S109–S118

    Article  PubMed  CAS  Google Scholar 

  9. Cristiani R, Ronnblad E, Engstrom B, Forssblad M, Stalman A (2018) Medial meniscus resection increases and medial meniscus repair preserves anterior knee laxity: a cohort study of 4497 patients with primary anterior cruciate ligament reconstruction. Am J Sports Med 46(2):357–362

    Article  PubMed  Google Scholar 

  10. Dejour D, Ferrua P, Bonin N, Saggin PR (2012) Double-bundle bone-patellar tendon-bone and gracilis in ACL reconstruction. Knee Surg Sports Traumatol Arthrosc 20(11):2239–2242

    Article  PubMed  Google Scholar 

  11. Dejour D, Khun A, Dejour H (1998) Osteotomie tibiale de déflexion et laxité chronique antérieure à propos de 22 cas. Rev Chir Orthop 84:28–29

    Google Scholar 

  12. Dejour D, La Barbera G, Pasqualotto S, Valoroso M, Nover L, Reynolds R, Saffarini M (2017) Sagittal plane corrections around the knee. J Knee Surg 30(8):736–745

    Article  PubMed  Google Scholar 

  13. Dejour D, Ntagiopoulos PG, Saggin PR, Panisset JC (2013) The diagnostic value of clinical tests, magnetic resonance imaging, and instrumented laxity in the differentiation of complete versus partial anterior cruciate ligament tears. Arthroscopy 29(3):491–499

    Article  PubMed  Google Scholar 

  14. Dejour D, Saffarini M, Demey G, Baverel L (2015) Tibial slope correction combined with second revision ACL produces good knee stability and prevents graft rupture. Knee Surg Sports Traumatol Arthrosc 23(10):2846–2852

    Article  PubMed  Google Scholar 

  15. Dejour H, Bonnin M (1994) Tibial translation after anterior cruciate ligament rupture. Two radiological tests compared. J Bone Joint Surg Br 76(5):745–749

    Article  PubMed  CAS  Google Scholar 

  16. Dejour H, Walch G, Neyret P, Adeleine P (1988) Results of surgically treated chronic anterior laxities. Apropos of 251 cases reviewed with a minimum follow-up of 3 years. Rev Chir Orthop Reparatrice Appar Mot 74(7):622–636

    PubMed  CAS  Google Scholar 

  17. Feucht MJ, Mauro CS, Brucker PU, Imhoff AB, Hinterwimmer S (2013) The role of the tibial slope in sustaining and treating anterior cruciate ligament injuries. Knee Surg Sports Traumatol Arthrosc 21(1):134–145

    Article  PubMed  Google Scholar 

  18. Galano GJ, Suero EM, Citak M, Wickiewicz T, Pearle AD (2012) Relationship of native tibial plateau anatomy with stability testing in the anterior cruciate ligament-deficient knee. Knee Surg Sports Traumatol Arthrosc 20(11):2220–2224

    Article  PubMed  Google Scholar 

  19. Herzberg SD, Motu’apuaka ML, Lambert W, Fu R, Brady J, Guise JM (2017) The effect of menstrual cycle and contraceptives on ACL injuries and laxity: a systematic review and meta-analysis. Orthop J Sports Med 5(7):2325967117718781

    Article  PubMed  PubMed Central  Google Scholar 

  20. Jakob RP, Staubli HU, Deland JT (1987) Grading the pivot shift. Objective tests with implications for treatment. J Bone Joint Surg Br 69(2):294–299

    Article  PubMed  CAS  Google Scholar 

  21. Kopf S, Kauert R, Halfpaap J, Jung T, Becker R (2012) A new quantitative method for pivot shift grading. Knee Surg Sports Traumatol Arthrosc 20(4):718–723

    Article  PubMed  CAS  Google Scholar 

  22. Labbe DR, Li D, Grimard G, de Guise JA, Hagemeister N (2015) Quantitative pivot shift assessment using combined inertial and magnetic sensing. Knee Surg Sports Traumatol Arthrosc 23(8):2330–2338

    Article  PubMed  Google Scholar 

  23. Lee H, Petrofsky JS, Daher N, Berk L, Laymon M (2014) Differences in anterior cruciate ligament elasticity and force for knee flexion in women: oral contraceptive users versus non-oral contraceptive users. Eur J Appl Physiol 114(2):285–294

    Article  PubMed  CAS  Google Scholar 

  24. Lee H, Petrofsky JS, Daher N, Berk L, Laymon M, Khowailed IA (2013) Anterior cruciate ligament elasticity and force for flexion during the menstrual cycle. Med Sci Monit 19:1080–1088

    Article  PubMed  PubMed Central  Google Scholar 

  25. Li Y, Hong L, Feng H, Wang Q, Zhang H, Song G (2014) Are failures of anterior cruciate ligament reconstruction associated with steep posterior tibial slopes? A case control study. Chin Med J (Engl) 127(14):2649–2653

    Google Scholar 

  26. Li Y, Hong L, Feng H, Wang Q, Zhang J, Song G, Chen X, Zhuo H (2014) Posterior tibial slope influences static anterior tibial translation in anterior cruciate ligament reconstruction: a minimum 2-year follow-up study. Am J Sports Med 42(4):927–933

    Article  PubMed  Google Scholar 

  27. Lopomo N, Signorelli C, Bonanzinga T, Marcheggiani Muccioli GM, Visani A, Zaffagnini S (2012) Quantitative assessment of pivot-shift using inertial sensors. Knee Surg Sports Traumatol Arthrosc 20(4):713–717

    Article  PubMed  Google Scholar 

  28. Lopomo N, Zaffagnini S, Signorelli C, Bignozzi S, Giordano G, Marcheggiani Muccioli GM, Visani A (2012) An original clinical methodology for non-invasive assessment of pivot-shift test. Comput Methods Biomech Biomed Engin 15(12):1323–1328

    Article  PubMed  Google Scholar 

  29. Lorbach O, Kieb M, Herbort M, Weyers I, Raschke M, Engelhardt M (2015) The influence of the medial meniscus in different conditions on anterior tibial translation in the anterior cruciate deficient knee. Int Orthop 39(4):681–687

    Article  PubMed  Google Scholar 

  30. Lustig S, Scholes CJ, Leo SP, Coolican M, Parker DA (2013) Influence of soft tissues on the proximal bony tibial slope measured with two-dimensional MRI. Knee Surg Sports Traumatol Arthrosc 21(2):372–379

    Article  PubMed  Google Scholar 

  31. Magnussen RA, Reinke EK, Huston LJ, Hewett TE, Spindler KP (2016) Factors associated with high-grade lachman, pivot shift, and anterior drawer at the time of anterior cruciate ligament reconstruction. Arthroscopy 32(6):1080–1085

    Article  PubMed  PubMed Central  Google Scholar 

  32. Marouane H, Shirazi-Adl A, Hashemi J (2015) Quantification of the role of tibial posterior slope in knee joint mechanics and ACL force in simulated gait. J Biomech 48(10):1899–1905

    Article  PubMed  CAS  Google Scholar 

  33. Minami T, Muneta T, Sekiya I, Watanabe T, Mochizuki T, Horie M, Katagiri H, Otabe K, Ohara T, Katakura M, Koga H (2018) Lateral meniscus posterior root tear contributes to anterolateral rotational instability and meniscus extrusion in anterior cruciate ligament-injured patients. Knee Surg Sports Traumatol Arthrosc 26(4):1174–1181

    PubMed  Google Scholar 

  34. Musahl V, Burnham J, Lian J, Popchak A, Svantesson E, Kuroda R, Zaffagnini S, Samuelsson K (2018) High-grade rotatory knee laxity may be predictable in ACL injuries. Knee Surg Sports Traumatol Arthrosc. https://doi.org/10.1007/s00167-018-5019-y

    Article  PubMed  Google Scholar 

  35. Musahl V, Citak M, O’Loughlin PF, Choi D, Bedi A, Pearle AD (2010) The effect of medial versus lateral meniscectomy on the stability of the anterior cruciate ligament-deficient knee. Am J Sports Med 38(8):1591–1597

    Article  PubMed  Google Scholar 

  36. Musahl V, Rahnemai-Azar AA, Costello J, Arner JW, Fu FH, Hoshino Y, Lopomo N, Samuelsson K, Irrgang JJ (2016) The influence of meniscal and anterolateral capsular injury on knee laxity in patients with anterior cruciate ligament injuries. Am J Sports Med 44(12):3126–3131

    Article  PubMed  Google Scholar 

  37. Myer GD, Ford KR, Khoury J, Succop P, Hewett TE (2011) Biomechanics laboratory-based prediction algorithm to identify female athletes with high knee loads that increase risk of ACL injury. Br J Sports Med 45(4):245–252

    Article  PubMed  Google Scholar 

  38. Nagai K, Tashiro Y, Herbst E, Gale T, Wang JH, Irrgang JJ, Anderst W, Fu FH (2018) Steeper posterior tibial slope correlates with greater tibial tunnel widening after anterior cruciate ligament reconstruction. Knee Surg Sports Traumatol Arthrosc. https://doi.org/10.1007/s00167-018-5004-5

    Article  PubMed  Google Scholar 

  39. Neyret P, Zuppi G, Selmi TAS (2000) Tibial deflexion osteotomy. Op Tech Sports Med 8(1):61–66

    Article  Google Scholar 

  40. Panisset JC, Ntagiopoulos PG, Saggin PR, Dejour D (2012) A comparison of Telos stress radiography versus Rolimeter in the diagnosis of different patterns of anterior cruciate ligament tears. Orthop Traumatol Surg Res 98(7):751–758

    Article  PubMed  Google Scholar 

  41. Peltier A, Lording T, Maubisson L, Ballis R, Neyret P, Lustig S (2015) The role of the meniscotibial ligament in posteromedial rotational knee stability. Knee Surg Sports Traumatol Arthrosc 23(10):2967–2973

    Article  PubMed  CAS  Google Scholar 

  42. Pfeiffer TR, Kanakamedala AC, Herbst E, Nagai K, Murphy C, Burnham JM, Popchak A, Debski RE, Musahl V (2018) Female sex is associated with greater rotatory knee laxity in collegiate athletes. Knee Surg Sports Traumatol Arthrosc 26(5):1319–1325

    Article  PubMed  Google Scholar 

  43. Quatman CE, Ford KR, Myer GD, Paterno MV, Hewett TE (2008) The effects of gender and pubertal status on generalized joint laxity in young athletes. J Sci Med Sport 11(3):257–263

    Article  PubMed  Google Scholar 

  44. Rahnemai-Azar AA, Abebe ES, Johnson P, Labrum J, Fu FH, Irrgang JJ, Samuelsson K, Musahl V (2017) Increased lateral tibial slope predicts high-grade rotatory knee laxity pre-operatively in ACL reconstruction. Knee Surg Sports Traumatol Arthrosc 25(4):1170–1176

    Article  PubMed  Google Scholar 

  45. Schatka I, Weiler A, Jung TM, Walter TC, Gwinner C (2018) High tibial slope correlates with increased posterior tibial translation in healthy knees. Knee Surg Sports Traumatol Arthrosc 26(9):2697–2703

    Article  PubMed  Google Scholar 

  46. Slocum B, Devine T (1983) Cranial tibial thrust: a primary force in the canine stifle. J Am Vet Med Assoc 183(4):456–459

    PubMed  CAS  Google Scholar 

  47. Slocum B, Devine T (1984) Cranial tibial wedge osteotomy: a technique for eliminating cranial tibial thrust in cranial cruciate ligament repair. J Am Vet Med Assoc 184(5):564–569

    PubMed  CAS  Google Scholar 

  48. Slocum DB, James SL, Larson RL, Singer KM (1976) Clinical test for anterolateral rotary instability of the knee. Clin Orthop Relat Res 118:63–69

    Google Scholar 

  49. Song GY, Zhang H, Wu G, Zhang J, Liu X, Xue Z, Qian Y, Feng H (2017) Patients with high-grade pivot-shift phenomenon are associated with higher prevalence of anterolateral ligament injury after acute anterior cruciate ligament injuries. Knee Surg Sports Traumatol Arthrosc 25(4):1111–1116

    Article  PubMed  Google Scholar 

  50. Sonnery-Cottet B, Mogos S, Thaunat M, Archbold P, Fayard JM, Freychet B, Clechet J, Chambat P (2014) Proximal tibial anterior closing wedge osteotomy in repeat revision of anterior cruciate ligament reconstruction. Am J Sports Med 42(8):1873–1880

    Article  PubMed  Google Scholar 

  51. Stephen JM, Halewood C, Kittl C, Bollen SR, Williams A, Amis AA (2016) Posteromedial meniscocapsular lesions increase tibiofemoral joint laxity with anterior cruciate ligament deficiency, and their repair reduces laxity. Am J Sports Med 44(2):400–408

    Article  PubMed  Google Scholar 

  52. Sundemo D, Blom A, Hoshino Y, Kuroda R, Lopomo NF, Zaffagnini S, Musahl V, Irrgang JJ, Karlsson J, Samuelsson K (2018) Correlation between quantitative pivot shift and generalized joint laxity: a prospective multicenter study of ACL ruptures. Knee Surg Sports Traumatol Arthrosc 26(8):2362–2370

    Article  PubMed  Google Scholar 

  53. Tagesson S, Witvrouw E, Kvist J (2013) Differences in knee joint stabilization between children and adults and between the sexes. Am J Sports Med 41(3):678–683

    Article  PubMed  Google Scholar 

  54. Tanaka T, Hoshino Y, Miyaji N, Ibaragi K, Nishida K, Nishizawa Y, Araki D, Kanzaki N, Matsushita T, Kuroda R (2018) The diagnostic reliability of the quantitative pivot-shift evaluation using an electromagnetic measurement system for anterior cruciate ligament deficiency was superior to those of the accelerometer and iPad image analysis. Knee Surg Sports Traumatol Arthrosc 26(9):2835–2840

    Article  PubMed  Google Scholar 

  55. Ueki H, Nakagawa Y, Ohara T, Watanabe T, Horie M, Katagiri H, Otabe K, Katagiri K, Hiyama K, Katakura M, Hoshino T, Inomata K, Araya N, Sekiya I, Muneta T, Koga H (2018) Risk factors for residual pivot shift after anterior cruciate ligament reconstruction: data from the MAKS group. Knee Surg Sports Traumatol Arthrosc

  56. Yang C, Tashiro Y, Lynch A, Fu F, Anderst W (2017) Kinematics and arthrokinematics in the chronic ACL-deficient knee are altered even in the absence of instability symptoms. Knee Surg Sports Traumatol Arthrosc 26(5):1406–1413

    Article  PubMed  PubMed Central  Google Scholar 

  57. Zaffagnini S, Signorelli C, Bonanzinga T, Grassi A, Galan H, Akkawi I, Bragonzoni L, Cataldi F, Marcacci M (2016) Does meniscus removal affect ACL-deficient knee laxity? An in vivo study. Knee Surg Sports Traumatol Arthrosc 24(11):3599–3604

    Article  PubMed  CAS  Google Scholar 

  58. Zaffagnini S, Signorelli C, Grassi A, Yue H, Raggi F, Urrizola F, Bonanzinga T, Marcacci M (2016) Assessment of the pivot shift using inertial sensors. Curr Rev Musculoskelet Med 9(2):160–163

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Funding

There is no funding source.

Author information

Authors and Affiliations

Authors

Contributions

DD participated in study design, data collection, literature review, and manuscript writing. MP participated in study design, data collection, and manuscript writing. JV participated in literature review and manuscript writing. LN participated in statistical analysis, tables’ preparation, and manuscript editing. MS participated in study design, literature review, and manuscript writing. GD participated in study design, data collection, and manuscript editing. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Mo Saffarini.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki Declaration and its later amendments or comparable ethical standards.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dejour, D., Pungitore, M., Valluy, J. et al. Preoperative laxity in ACL-deficient knees increases with posterior tibial slope and medial meniscal tears. Knee Surg Sports Traumatol Arthrosc 27, 564–572 (2019). https://doi.org/10.1007/s00167-018-5180-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00167-018-5180-3

Keywords

Navigation