Advertisement

Knee Surgery, Sports Traumatology, Arthroscopy

, Volume 27, Issue 2, pp 361–368 | Cite as

Meniscal repair concurrent with anterior cruciate ligament reconstruction restores posterior shift of the medial meniscus in the knee-flexed position

  • Yoshiki Okazaki
  • Takayuki FurumatsuEmail author
  • Shinichi Miyazawa
  • Yuya Kodama
  • Yusuke Kamatsuki
  • Tomohito Hino
  • Shin Masuda
  • Toshifumi Ozaki
KNEE
  • 171 Downloads

Abstract

Purpose

The purpose of this study was to evaluate the shape and shift of the medial meniscus before and after meniscal repair concurrent with anterior cruciate ligament (ACL) reconstruction using magnetic resonance imaging (MRI) at 90° of knee flexion.

Methods

This study included 18 patients with ACL-deficient knees without meniscus tears (group A), 11 patients with medial meniscus tears alone (group M), and 15 patients with ACL-deficient knees complicated with medial meniscus tears (group AM). The posterior segment shape was evaluated using open MRI at 90° of knee flexion preoperatively and at 3 months postoperatively. The length, height, width, and posterior extrusion of the medial meniscus and posterior tibiofemoral distance were measured. These measurements were compared between the three groups.

Results

On preoperative MRI, a significant difference was observed in the posterior extrusion of the medial meniscus (group A, 1.2 ± 0.5 mm; group M, 1.7 ± 0.3 mm; group AM, 4.1 ± 1.5 mm, p < 0.001). All parameters did not differ between the three groups on postoperative MRI. In addition, the posterior width and extrusion of the medial meniscus were decreased significantly after meniscal repair concurrent with ACL reconstruction.

Conclusions

This study demonstrated that the medial meniscus shifted posteriorly at 90° of knee flexion in ACL-deficient knees complicated with medial meniscus tears. Medial meniscal repair concurrent with ACL reconstruction improved the deformed morphology and posterior extrusion. MRI measurements of the posterior extrusion at the knee-flexed position may be clinically useful to assess the functional improvement of the medial meniscus following meniscal repair combined with ACL reconstruction.

Level of evidence

III.

Keywords

Medial meniscus Posterior shift Anterior cruciate ligament reconstruction Meniscal repair Open magnetic resonance imaging Flexed-knee position 

Notes

Acknowledgements

This study was supported by radiologic technologists in our university for taking accurate MRI and Ms. Ami Maehara for preparing schematic illustrations. Further, we would like to thank Editage (http://www.editage.jp) for English language editing.

Author contributions

YO, YK, TH, and TO measured the MRI-based parameters. TF and SM carried out the arthroscopic surgery. TF designed this study. YO and SM compiled the data. YO and TF prepared the manuscript, tables, and figures. All authors have approved the final manuscript.

Funding

No funding was required.

Compliance with ethical standards

Conflict of interest

The authors report no conflicts of interest.

Ethical approval

The Institutional Review Board (Okayama University Graduate School, Okayama, Japan) approved this study.

Informed consent

Informed consent was obtained from all patients in this study.

References

  1. 1.
    Amano H, Iwahashi T, Suzuki T, Mae T, Nakamura N, Sugamoto K et al (2015) Analysis of displacement and deformation of the medial meniscus with a horizontal tear using a three-dimensional computer model. Knee Surg Sports Traumatol Arthrosc 23(4):1153–1160CrossRefPubMedGoogle Scholar
  2. 2.
    Bell KM, Rahnemai-Azar AA, Irarrazaval S, Guenther D, Fu FH, Musahl V et al (2018) In situ force in the anterior cruciate ligament, the lateral collateral ligament, and the anterolateral capsule complex during a simulated pivot shift test. J Orthop Res 36(3):847–853PubMedGoogle Scholar
  3. 3.
    Chhadia AM, Inacio MC, Maletis GB, Csintalan RP, Davis BR, Funahashi TT (2011) Are meniscus and cartilage injuries related to time to anterior cruciate ligament reconstruction? Am J Sports Med 39(9):1894–1899CrossRefPubMedGoogle Scholar
  4. 4.
    Dean CS, Chahla J, Matheny LM, Mitchell JJ, LaPrade RF (2017) Outcomes after biologically augmented isolated meniscal repair with marrow venting are comparable with those after meniscal repair with concomitant anterior cruciate ligament reconstruction. Am J Sports Med 45(6):1341–1348CrossRefPubMedGoogle Scholar
  5. 5.
    Fujii M, Furumatsu T, Miyazawa S, Tanaka T, Inoue H, Kodama Y et al (2016) Features of human autologous hamstring graft elongation after pre-tensioning in anterior cruciate ligament reconstruction. Int Orthop 40(12):2553–2558CrossRefPubMedGoogle Scholar
  6. 6.
    Furumatsu T, Fujii M, Tanaka T, Miyazawa S, Ozaki T (2015) The figure-of-nine leg position for anatomic anterior cruciate ligament reconstruction. Orthop Traumatol Surg Res 101(3):391–393CrossRefPubMedGoogle Scholar
  7. 7.
    Furumatsu T, Kodama Y, Maehara A, Miyazawa S, Fujii M, Tanaka T et al (2016) The anterior cruciate ligament-lateral meniscus complex: a histological study. Connect Tissue Res 57(2):91–98CrossRefPubMedGoogle Scholar
  8. 8.
    Furumatsu T, Miyazawa S, Tanaka T, Okada Y, Fujii M, Ozaki T (2014) Postoperative change in medial meniscal length in concurrent all-inside meniscus repair with anterior cruciate ligament reconstruction. Int Orthop 38(7):1393–1399CrossRefPubMedGoogle Scholar
  9. 9.
    Furumatsu T, Ozaki T (2018) Iatrogenic injury of the lateral meniscus anterior insertion following anterior cruciate ligament reconstruction: a case report. J Orthop Sci 23(1):197–201CrossRefPubMedGoogle Scholar
  10. 10.
    Granan LP, Bahr R, Lie SA, Engebretsen L (2009) Timing of anterior cruciate ligament reconstructive surgery and risk of cartilage lesions and meniscal tears: a cohort study based on the Norwegian National Knee Ligament Registry. Am J Sports Med 37(5):955–961CrossRefPubMedGoogle Scholar
  11. 11.
    Imhauser C, Mauro C, Choi D, Rosenberg E, Matthew S, Nguyen J et al (2013) Abnormal tibiofemoral contact stress and its association with altered kinematics after center–center anterior cruciate ligament reconstruction: an in vitro study. Am J Sports Med 41(4):815–825CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Inoue H, Furumatsu T, Miyazawa S, Fujii M, Kodama Y, Ozaki T (2018) Improvement in the medial meniscus posterior shift following anterior cruciate ligament reconstruction. Knee Surg Sports Traumatol Arthrosc 26(2):434–441CrossRefPubMedGoogle Scholar
  13. 13.
    Kashihara N, Furumatsu T, Kodama Y, Tanaka T, Ozaki T (2016) Concurrent lateral meniscal repair with anterior cruciate ligament reconstruction induces the extrusion of the lateral meniscus: assessments of magnetic resonance images. Acta Med Okayama 70(6):441–448PubMedGoogle Scholar
  14. 14.
    Kim D, Asai S, Moon CW, Hwang SC, Lee S, Keklikci K et al (2015) Biomechanical evaluation of anatomic single- and double-bundle anterior cruciate ligament reconstruction techniques using the quadriceps tendon. Knee Surg Sports Traumatol Arthrosc 23(3):687–695CrossRefPubMedGoogle Scholar
  15. 15.
    Kodama Y, Furumatsu T, Miyazawa S, Fujii M, Tanaka T, Inoue H et al (2017) Location of the tibial tunnel aperture affects extrusion of the lateral meniscus following reconstruction of the anterior cruciate ligament. J Orthop Res 5(8):1625–1633CrossRefGoogle Scholar
  16. 16.
    Kondo E, Merican AM, Yasuda K, Amis AA (2011) Biomechanical comparison of anatomic double-bundle, anatomic single-bundle, and nonanatomic single-bundle anterior cruciate ligament reconstructions. Am J Sports Med 39:279–288CrossRefPubMedGoogle Scholar
  17. 17.
    Luc B, Gribble PA, Pietrosimone BG (2014) Osteoarthritis prevalence following anterior cruciate ligament reconstruction: a systematic review and numbers-needed-to-treat analysis. J Athl Train 49(6):806–819CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Markolf KL, Jackson SR, McAllister DR (2012) Force measurements in the medial meniscus posterior horn attachment: effects of anterior cruciate ligament removal. Am J Sports Med 40:332–338CrossRefPubMedGoogle Scholar
  19. 19.
    Melton JT, Murray JR, Karim A, Pandit H, Wandless F, Thomas NP (2011) Meniscal repair in anterior cruciate ligament reconstruction: a long- term outcome study. Knee Surg Sports Traumatol Arthrosc 19(10):1729–1734CrossRefPubMedGoogle Scholar
  20. 20.
    Muriuki MG, Tuason DA, Tucker BG, Harner CD (2011) Changes in tibiofemoral contact mechanics following radial split and vertical tears of the medial meniscus: an in vitro investigation of the efficacy of arthroscopic repair. J Bone Jt Surg Am 93(12):1089–1095CrossRefGoogle Scholar
  21. 21.
    Musahl V, Citak M, O’Loughlin PF, Choi D, Bedi A, Pearle AD (2010) The effect of medial versus lateral meniscectomy on the stability of the anterior cruciate ligament-deficient knee. Am J Sports Med 38:1591–1597CrossRefPubMedGoogle Scholar
  22. 22.
    Nagai K, Gale T, Irrgang JJ, Tashman S, Fu FH, Anderst W (2018) Anterior cruciate ligament reconstruction affects tibiofemoral joint congruency during dynamic functional movement. Am J Sports Med 46(7):1566–1574CrossRefPubMedGoogle Scholar
  23. 23.
    Nakata K, Shino K, Horibe S, Tanaka Y, Toritsuka Y, Nakamura N et al (2008) Arthroscopic anterior cruciate ligament reconstruction using fresh-frozen bone plug-free allogeneic tendons: 10-year follow-up. Arthroscopy 24:285–291CrossRefPubMedGoogle Scholar
  24. 24.
    Narazaki S, Furumatsu T, Tanaka T, Fujii M, Miyazawa S, Inoue H et al (2015) Postoperative change in the length and extrusion of the medial meniscus after anterior cruciate ligament reconstruction. Int Orthop 39(12):2481–2487CrossRefPubMedGoogle Scholar
  25. 25.
    Neuman P, Englund M, Kostogiannis I, Friden T, Roos H, Dahlberg LE (2008) Prevalence of tibiofemoral osteoarthritis 15 years after nonoperative treatment of anterior cruciate ligament injury: a prospective cohort study. Am J Sports Med 36(9):1717–1725CrossRefPubMedGoogle Scholar
  26. 26.
    Papageorgiou CD, Gil JE, Kanamori A, Fenwick JA, Woo SL, Fu FH (2001) The biomechanical interdependence between the anterior cruciate ligament replacement graft and the medial meniscus. Am J Sports Med 29(2):226–231CrossRefPubMedGoogle Scholar
  27. 27.
    Seon JK, Gadikota HR, Kozanek M, Oh LS, Gill TJ, Li G (2009) The effect of anterior cruciate ligament reconstruction on kinematics of the knee with combined anterior cruciate ligament injury and subtotal medial meniscectomy: an in vitro robotic investigation. Arthroscopy 25:123–130CrossRefPubMedGoogle Scholar
  28. 28.
    Scholes C, Houghton ER, Lee M, Lustig S (2015) Meniscal translation during knee flexion: what do we really know? Knee Surg Sports Traumatol Arthrosc 23(1):32–40CrossRefPubMedGoogle Scholar
  29. 29.
    Shefelbine SJ, Ma CB, Lee KY, Schrumpf MA, Patel P, Safran MR et al (2006) MRI analysis of in vivo meniscal and tibiofemoral kinematics in ACL-deficient and normal knees. J Orthop Res 24(6):1208–1217CrossRefPubMedGoogle Scholar
  30. 30.
    Shrout PE, Fleiss JL (1979) Intraclass correlations: uses in assessing rater reliability. Psychol Bull 86(2):420–428CrossRefPubMedGoogle Scholar
  31. 31.
    Tachibana Y, Sakaguchi K, Goto T, Oda H, Yamazaki K, Iida S (2010) Repair integrity evaluated by second-look arthroscopy after arthroscopic meniscal repair with the FasT-Fix during anterior cruciate ligament reconstruction. Am J Sports Med 38(5):965–971CrossRefPubMedGoogle Scholar
  32. 32.
    Walter RP, Dhadwal AS, Schranz P, Mandalia V (2014) The outcome of all-inside meniscal repair with relation to previous anterior cruciate ligament reconstruction. Knee 21(6):1156–1159CrossRefPubMedGoogle Scholar
  33. 33.
    Wasserstein D, Dwyer T, Gandhi R, Austin PC, Mahomed N, Ogilvie-Harris D (2013) A matched-cohort population study of reoperation after meniscal repair with and without concomitant anterior cruciate ligament reconstruction. Am J Sports Med 41:349–355CrossRefPubMedGoogle Scholar
  34. 34.
    Westermann RW, Duchman KR, Amendola A, Glass N, Wolf BR (2017) All-inside versus inside-out meniscal repair with concurrent anterior cruciate ligament reconstruction: a meta-regression analysis. Am J Sports Med 45(3):719–724CrossRefPubMedGoogle Scholar
  35. 35.
    Yao J, Lancianese SL, Hovinga KR, Lee J, Lerner AL (2008) Magnetic resonance image analysis of meniscal translation and tibio-menisco-femoral contact in deep knee flexion. J Orthop Res 26(5):673–684CrossRefPubMedGoogle Scholar

Copyright information

© European Society of Sports Traumatology, Knee Surgery, Arthroscopy (ESSKA) 2018

Authors and Affiliations

  1. 1.Department of Orthopaedic SurgeryOkayama University Graduate SchoolOkayamaJapan

Personalised recommendations