Advertisement

Knee Surgery, Sports Traumatology, Arthroscopy

, Volume 27, Issue 2, pp 491–497 | Cite as

Inferior graft maturity in the PL bundle after autograft hamstring double-bundle ACL reconstruction

  • Hideaki FukudaEmail author
  • Shigehiro Asai
  • Izumi Kanisawa
  • Tatsuya Takahashi
  • Takahiro Ogura
  • Hiroki Sakai
  • Kenji Takahashi
  • Akihiro Tsuchiya
Knee
  • 166 Downloads

Abstract

Purpose

The purpose of this study was to evaluate the signal/noise quotient (SNQ) for graft maturation and the serial changes observed in the magnetic resonance imaging (MRI) findings after double-bundle (DB) anterior cruciate ligament (ACL) reconstruction using a hamstring tendon autograft at a minimum of 5 years after surgery.

Methods

Forty-five patients who underwent DB ACL reconstruction between 2007 and 2010 were included in this prospective study. All participants underwent postoperative MRI at 3 weeks and 3, 6, 9 and 12, 18, 24, 36, 48 and 50 months. The signal intensity (SI) characteristics of the reconstructed graft were evaluated on oblique axial proton density-weighted MR imaging (PDWI) perpendicular to the grafts. The signal/noise quotient (SNQ) was calculated to quantitatively determine the normalized SI. The SNQ of the AMB and PLB was evaluated separately.

Results

The mean SNQ of the AM bundle (AMB) continued to increase until 6 months after surgery (5.2 ± 1.2), and then gradually decreased and became well stabilized by 18 months (3.3 ± 0.5), after which it remained unchanged. On the other hand, the mean SNQ of the PL bundle (PLB) continued to increase until 9 months after surgery (6.2 ± 1.1), and then decreased incrementally and became well stabilized by 24 months (4.1 ± 0.5). The SI of PLB was significantly higher than that of AMB between 3 and 24 months (p = 0.04, 0.03, 0.01, 0.04, 0.02 and 0.03, respectively).

Conclusions

These results indicate that at least 18 months is needed after ACL reconstruction to sufficiently restore the SI of the AMB, while at least 24 months are needed to for the PLB. The SI of the PLB was significantly higher than that of the AMB at 3–24 months after surgery, indicating that the PLB showed inferior graft maturity to the AMB until 24 months after surgery. For clinical relevance, the correct understanding of serial changes in graft maturation may potentially be used in decision-making regarding a return to sports.

Level of evidence

Prospective case series, Level IV.

Keywords

Anterior cruciate ligament Magnetic resonance imaging Double bundle The graft maturation Signal intensity The signal/noise quotient 

Abbreviations

ACL

Anterior cruciate ligament

PCL

Posterior cruciate ligament

AM

Anteromedial

PL

Posterolateral

SNQ

The signal/noise quotient

SI

Signal intensity

PDWI

Proton density-weighted images

Notes

Funding

The authors received no financial support for the research, authorship and/or publication of this article.

Compliance with ethical standards

Conflict of interest

The authors declare no potential conflicts of interest with respect to the research, authorship and/or publication of this article.

Ethical approval

Ethical approval was obtained from institutional review board.

References

  1. 1.
    Abe S, Kurosaka M, Iguchi T, Yoshiya S, Hirohata K (1993) Light and electron microscopic study of remodeling and maturation process in autogenous graft for anterior cruciate ligament reconstruction. Arthroscopy 9:394–405CrossRefPubMedGoogle Scholar
  2. 2.
    Ahn JH, Lee SH (2007) Anterior cruciate ligament double-bundle reconstruction with hamstring tendon autografts. Arthroscopy 23:109.e101–109.e104Google Scholar
  3. 3.
    Ahn JH, Lee SH, Choi SH, Lim TK (2010) Magnetic resonance imaging evaluation of anterior cruciate ligament reconstruction using quadrupled hamstring tendon autografts: comparison of remnant bundle preservation and standard technique. Am J Sports Med 38:1768–1777CrossRefPubMedGoogle Scholar
  4. 4.
    Ahn JH, Kim JD, Kang HW (2015) Anatomic placement of the femoral tunnels in double-bundle anterior cruciate ligament reconstruction correlates with improved graft maturation and clinical outcomes. Arthroscopy 31:2152–2161CrossRefPubMedGoogle Scholar
  5. 5.
    Amiel D, Kleiner JB, Roux RD, Harwood FL, Akeson WH (1986) The phenomenon of “ligamentization”: anterior cruciate ligament reconstruction with autogenous patellar tendon. J Orthop Res 4:162–172CrossRefPubMedGoogle Scholar
  6. 6.
    Arnoczky SP, Tarvin GB, Marshall JL (1982) Anterior cruciate ligament replacement using patellar tendon. An evaluation of graft revascularization in the dog. J Bone Joint Surg Am 64:217–224CrossRefPubMedGoogle Scholar
  7. 7.
    Bach JM, Hull ML (1998) Strain inhomogeneity in the anterior cruciate ligament under application of external and muscular loads. J Biomech Eng 120:497–503CrossRefPubMedGoogle Scholar
  8. 8.
    Biercevicz AM, Akelman MR, Fadale PD, Hulstyn MJ, Shalvoy RM, Fleming BC et al (2015) MRI volume and signal intensity of ACL graft predict clinical, functional, and patient-oriented outcome measures after ACL reconstruction. Am J Sports Med 43:693–699CrossRefPubMedGoogle Scholar
  9. 9.
    Casagranda BU, Maxwell NJ, Kavanagh EC, Towers JD, Shen W, Fu FH (2009) Normal appearance and complications of double-bundle and selective-bundle anterior cruciate ligament reconstructions using optimal MRI techniques. AJR Am J Roentgenol 192:1407–1415CrossRefPubMedGoogle Scholar
  10. 10.
    Chang MJ, Chang CB, Choi JY, Won HH, Kim TK (2013) How useful is MRI in diagnosing isolated bundle ACL injuries? Clin Orthop Relat Res 471:3283–3290CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Choi JY, Ha JK, Kim YW, Shim JC, Yang SJ, Kim JG (2011) Relationships among tendon regeneration on MRI, flexor strength, and functional performance after anterior cruciate ligament reconstruction with hamstring autograft. Am J Sports Med 40:152–162CrossRefPubMedGoogle Scholar
  12. 12.
    Claes S, Verdonk P, Forsyth R, Bellemans J (2011) The ligamentization process in anterior cruciate ligament reconstruction: what happens to the human graft? A systematic review of the literature. Am J Sports Med 39:2476–2483CrossRefPubMedGoogle Scholar
  13. 13.
    Falconiero RP, DiStefano VJ, Cook TM (1998) Revascularization and ligamentization of autogenous anterior cruciate ligament grafts in humans. Arthroscopy 14:197–205CrossRefPubMedGoogle Scholar
  14. 14.
    Farshad-Amacker NA, Potter HG (2013) MRI of knee ligament injury and reconstruction. J Magn Reson Imaging 38:757–773CrossRefPubMedGoogle Scholar
  15. 15.
    Fu FH, Shen W, Starman JS, Okeke N, Irrang JJ (2008) Primary anatomic double-bundle anterior cruciate ligament reconstruction. A preliminary 2-year prospective study. Am J Sports Med 36:1263–1274CrossRefPubMedGoogle Scholar
  16. 16.
    Frobell RB, Le Graverand MP, Buck R, Roos HP, Tamez-Pena J, Totterman S, Lohmander LS (2009) The acutely ACL injured knee assessed by MRI: changes in joint fluid, bone marrow lesions, and cartilage during the first year. Osteoarthr Cartil 17:161–167CrossRefPubMedGoogle Scholar
  17. 17.
    Gohil S, Annear PO, Breidahl W (2007) Anterior cruciate ligament reconstruction using autologous double hamstrings: a comparison of standard versus minimal debridement techniques using MRI to assess revascularization. A randomised prospective study with a one-year follow-up. J Bone Joint Surg Br 89:1165–1171CrossRefPubMedGoogle Scholar
  18. 18.
    Hakozaki A, Niki Y, Enomoto H, Toyama Y, Suda Y (2015) Clinical significance of T2*-weighted gradient-echo MRI to monitor graft maturation over one year after anatomic double-bundle anterior cruciate ligament reconstruction: a comparative study with proton density-weighted MRI. Knee 22:4–10CrossRefPubMedGoogle Scholar
  19. 19.
    Hensler D, Illingworth KD, Musahl V, Working ZM, Kobayashi T, Miyawaki M, Lorenz S, Witt M, Irrgang JJ, Huard J, Fu FH (2015) Does fibrin clot really enhance graft healing after double-bundle ACL reconstruction in a caprine model? Knee Surg Sports Traumatol Arthrosc 23:669–679CrossRefPubMedGoogle Scholar
  20. 20.
    Hoher J (1998) Early stress causes graft-tunnel motion in hamstring grafts. Trans Orthop Res Soc 23:44Google Scholar
  21. 21.
    Howell SM, Clark JA, Blasier RD (1991) Serial magnetic resonance imaging of hamstring anterior cruciate ligament autografts during the first year of implantation. Am J Sports Med 19:42–47CrossRefPubMedGoogle Scholar
  22. 22.
    Jackson DW, Grood ES, Cohn BT, Arnoczky SP, Simon TM, Cummings JF (1991) The effects of in situ freezing on the anterior cruciate ligament. An experimental study in goats. J Bone Joint Surg Am 73:201–213CrossRefPubMedGoogle Scholar
  23. 23.
    Janssen RP, van der Wijk J, Fiedler A, Schmidt T, Sala HA, Scheffler SU (2011) Remodelling of human hamstring autografts after anterior cruciate ligament reconstruction. Knee Surg Sports Traumatol Arthrosc 19:1299–1306CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Kiekara T, Järvelä T, Huhtala H, Moisala AS, Suomalainen P, Paakkala A (2014) Tunnel communication and increased graft signal intensity on magnetic resonance imaging of double-bundle anterior cruciate ligament reconstruction. Arthroscopy 30:1595–1601CrossRefPubMedGoogle Scholar
  25. 25.
    Kiekara T, Järvelä T, Huhtala H, Paakkala A (2012) MRI of double-bundle ACL reconstruction: evaluation of graft findings. Skelet Radiol 41:835–842CrossRefGoogle Scholar
  26. 26.
    Li H, Tao H, Cho S, Chen S, Yao Z (2012) Difference in graft maturity of the reconstructed anterior cruciate ligament 2 years postoperatively: a comparison between autografts and allografts in young men using clinical and 3.0-T magnetic resonance imaging evaluation. Am J Sports Med 40:1519–1526CrossRefPubMedGoogle Scholar
  27. 27.
    Ma Y, Murawski CD, Rahnemal-Azar AA, Maljian C, Lynch AD, Fu FH (2015) Graft maturity of the reconstructed anterior cruciate ligament 6 months postoperatively: a magnetic resonance imaging evaluation of quadriceps tendon with bone block and hamstring tendon autografts. Knee Surg Sports Traumatol Arthrosc 23:661–668CrossRefPubMedGoogle Scholar
  28. 28.
    Marumo K, Saito M, Yamagishi T, Fujii K (2005) The “ligamentization” process in human anterior cruciate ligament reconstruction with autogenous patellar and hamstring tendons: a biochemical study. Am J Sports Med 33:1166–1173CrossRefPubMedGoogle Scholar
  29. 29.
    Middleton KK, Hamilton T, Irrgang JJ, Karlsson J, Harner CD, Fu FH (2014) Anatomic anterior cruciate ligament (ACL) reconstruction: a global perspective. Part 1. Knee Surg Sports Traumatol Arthrosc 22:1467–1482CrossRefPubMedGoogle Scholar
  30. 30.
    Miyawaki M. Hensler D, Illingworth KD, Irrgang JJ, Fu FH (2014) Signal intensity on magnetic resonance imaging after allograft double-bundle anterior cruciate ligament reconstruction. Knee Surg Sports Traumatol Arthrosc 22:1002–1008CrossRefPubMedGoogle Scholar
  31. 31.
    Ntoulia A, Papadopoulou F, Zampeli F, Ristanis S, Argyropoulou M, Georgoulis A (2013) Evaluation with contrast-enhanced magnetic resonance imaging of the anterior cruciate ligament graft during its healing process: a two-year prospective study. Skelet Radiol 42:541–552CrossRefGoogle Scholar
  32. 32.
    Ntoulia A, Papadopoulou F, Ristanis S, Argyropoulou M, Georgoulis AD (2011) Revascularization process of the bone–patellar tendon–bone autograft evaluated by contrast enhanced magnetic resonance imaging 6 and 12 months after anterior cruciate ligament reconstruction. Am J Sports Med 39:1478–1486CrossRefPubMedGoogle Scholar
  33. 33.
    Otsubo H, Shino K, Nakamura N, Nakata K, Nakagawa S, Koyanagi M (2007) Arthroscopic evaluation of ACL grafts reconstructed with the anatomical two-bundle technique using hamstring tendon autograft. Knee Surg Sports Traumatol Arthrosc 15:720–728CrossRefPubMedGoogle Scholar
  34. 34.
    Pauzenberger L, Syré S, Schurz M (2013) “Ligamentization” in hamstring tendon grafts after anterior cruciate ligament reconstruction: a systematic review of the literature and a glimpse into the future. Arthroscopy 29:1712–1721CrossRefPubMedGoogle Scholar
  35. 35.
    Rougraff BT, Shelbourne KD, Gerth PK, Warner J (1993) Arthroscopic and histologic analysis of human patella tendon autografts used for anterior cruciate ligament reconstruction. Am J Sports Med 21:277–284CrossRefPubMedGoogle Scholar
  36. 36.
    Sánchez M, Anitua E, Azofra J, Prado R, Muruzabal F, Andia I (2010) Ligamentization of tendon grafts treated with an endogenous preparation rich in growth factors: gross morphology and histology. Arthroscopy 26:470–480CrossRefPubMedGoogle Scholar
  37. 37.
    Saupe N, White LM, Chiavaras MM, Essue J, Weller I, Kunz M, Hurtig M, Marks P (2008) Anterior cruciate ligament reconstruction grafts: MR imaging features at long-term follow-up—correlation with functional and clinical evaluation. Radiology 249:581–590CrossRefPubMedGoogle Scholar
  38. 38.
    Scheffler SU, Unterhauser FN, Weiler A (2008) Graft remodeling and ligamentization after cruciate ligament reconstruction. Knee Surg Sports Traumatol Arthrosc 16:834–842CrossRefPubMedGoogle Scholar
  39. 39.
    Sonnery-Cottet B, Zayni R, Conteduca J, Archbold P, Prost T, Carrillon Y, Clechet J, Thaunat M (2013) Posterolateral bundle reconstruction with anteromedial bundle remnant preservation in ACL tears clinical and MRI evaluation of 39 patients with 24-month follow-up. Orthop J Sports Med 1:2325967113501624CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Sonoda M, Morikawa T, Tsuchiya K, Moriya H (2007) Correlation between knee laxity and graft appearance on magnetic resonance imaging after double-bundle hamstring graft anterior cruciate ligament reconstruction. Am J Sports Med 35:936–942CrossRefPubMedGoogle Scholar
  41. 41.
    Stockle U, Hoffmann R, Schwedtke J, Lubrich J, Vogl T, Südkamp NP (1997) Value of MRI in assessment of cruciate ligament replacement. Unfallchirurg 100:212–218CrossRefPubMedGoogle Scholar
  42. 42.
    Suomalainen P, Moisala AS, Paakkala A, Kannus P, Jarvela T (2011) Double bundle versus single-bundle anterior cruciate ligament reconstruction: randomized clinical and magnetic resonance imaging study with 2-year follow-up. Am J Sports Med 39:1615–1622CrossRefPubMedGoogle Scholar
  43. 43.
    Weiler A, Peters G, Mäurer J, Unterhauser FN, Südkamp NP (2001) Biomechanical properties and vascularity of an anterior cruciate ligament graft can be predicted by contrast-enhanced magnetic resonance imaging. A two-year study in sheep. Am J Sports Med 29:751–761CrossRefPubMedGoogle Scholar
  44. 44.
    Wu JL, Seon JK, Gadikota HR, Hosseini A, Sutton KM, Gill TJ, Li G (2010) In situ forces in the anteromedial and posterolateral bundles of the anterior cruciate ligament under simulated functional loading conditions. Am J Sports Med 38:558–563CrossRefPubMedGoogle Scholar
  45. 45.
    Yagi M, Wong EK, Kanamori A, Debski RE, Fu FH, Woo SL (2002) Biomechanical analysis of anatomic anterior cruciate ligament reconstruction. Am J Sports Med 30:660–666CrossRefPubMedGoogle Scholar
  46. 46.
    Yanagisawa S, Kimura M, Hagiwara K, Ogoshi A, Nakagawa T, Shiozawa H, Ohsawa T (2018) Patient age as a preoperative factor associated with tunnel enlargement following double-bundle anterior cruciate ligament reconstruction using hamstring tendon autografts. Knee Surg Sports Traumatol Arthrosc 26(4):1230–1236PubMedGoogle Scholar
  47. 47.
    Yonetani Y, Toritsuka Y, Yamada Y, Iwahashi T, Yoshikawa H, Shino K (2005) Graft length changes in the bi-socket anterior cruciate ligament reconstruction: comparison between isometric and anatomic femoral tunnel placement. Arthroscopy 21:1317–1322CrossRefPubMedGoogle Scholar
  48. 48.
    Zantop T, Herbort M, Raschke MJ, Fu FH, Petersen W (2007) The role of the anteromedial and posterolateral bundles of the anterior cruciate ligament in anterior tibial translation and internal rotation. Am J Sports Med 35:223–227CrossRefPubMedGoogle Scholar
  49. 49.
    Zavras TD, Race A, Bull AM, Amis AA (2001) A comparative study of ‘isometric’ points for anterior cruciate ligament graft attachment. Knee Surg Sports Traumatol Arthrosc 9:28–33CrossRefPubMedGoogle Scholar

Copyright information

© European Society of Sports Traumatology, Knee Surgery, Arthroscopy (ESSKA) 2018

Authors and Affiliations

  1. 1.Funabashi Orthopaedic Hospital Sports Medicine CenterFunabashiJapan

Personalised recommendations