Knee Surgery, Sports Traumatology, Arthroscopy

, Volume 26, Issue 6, pp 1709–1716 | Cite as

Bi-cruciate stabilized total knee arthroplasty can reduce the risk of knee instability associated with posterior tibial slope

  • Masaru Hada
  • Hideki Mizu-uchiEmail author
  • Ken Okazaki
  • Takao Kaneko
  • Koji Murakami
  • Yuan Ma
  • Satoshi Hamai
  • Yasuharu Nakashima



The purpose of this study was to evaluate the relationship between posterior tibial slope and knee kinematics in bi-cruciate stabilized (BCS) total knee arthroplasty (TKA), which has not been previously reported.


This computer simulation study evaluated Journey 2 BCS components (Smith & Nephew, Inc., Memphis, TN, USA) implanted in a female patient to simulate weight-bearing stair climbing. Knee kinematics, patellofemoral contact forces, and quadriceps forces during stair climbing (from 86° to 6° of flexion) were computed in the simulation. Six different posterior tibial slope angles (0°–10°) were simulated to evaluate the effect of posterior tibial slope on knee kinematics and forces.


At 65° of knee flexion, no anterior sliding of the tibial component occurred if the posterior tibial slope was less than 10°. Anterior contact between the anterior aspect of the tibial post- and the femoral component was observed if the posterior tibial slope was 6° or more. An increase of 10° in posterior tibial slope (relative to 0°) led to a 4.8% decrease in maximum patellofemoral contact force and a 1.2% decrease in maximum quadriceps force.


BCS TKA has a wide acceptable range of posterior tibial slope for avoiding knee instability if the posterior tibial slope is less than 10°. Surgeons should prioritize avoiding adverse effects over trying to achieve positive effects such as decreasing patellofemoral contact force and quadriceps force by increasing posterior tibial slope. Our study helps surgeons determine the optimal posterior tibial slope during surgery with BCS TKA; posterior tibial slope should not exceed 10° in routine clinical practice.


Total knee arthroplasty Posterior tibial slope Knee instability Computer simulation Bi-cruciate stabilized type 



Total knee arthroplasty


Bi-cruciate stabilized




Anterior cruciate ligament


Posterior cruciate ligaments




Finite element






Intraclass correlation coefficients


Posterior tibial slope



We would like to thank Y. Wang and H. Higaki, Faculty of Engineering, Kyusyu Sangyo University, Fukuoka, Japan, for the help in analysing the data.

Authors’ contributions

MH collected and analysed the data and drafted the manuscript. HM conceived of the study, participated in its design, collected and analysed the data and coordination and helped to draft the manuscript. HM is also the corresponding author. KO collected and analysed the data and assisted in drafting the manuscript. TK, KM, and YM collected and analysed the data. SH assisted in drafting the manuscript. YN gave final approval to the manuscript.

Compliance with ethical standards

Conflict of interest

Hideki Mizu-uchi: Zimmer Biomet; Paid presenter or speaker. Ken Okazaki: Zimmer Biomet; Paid presenter or speaker. Smith & Nephew; Paid presenter or speaker. Johnson & Johnson; Paid presenter or speaker. Pfizer Inc.; Research support. Cyfuse Inc.; Research support. The authors declare that they have no conflict of interest concerning this study.


No funds were received in support of this study.

Ethical approval

This study was approved by the institutional review board of Kyushu University (No. 25–74).

Informed consent

Informed consent was obtained from all patients prior to study participation.


  1. 1.
    Barrett WP, Mason JB, Moskal JT, Dalury DF, Oliashirazi A, Fisher DA (2011) Comparison of radiographic alignment of imageless computer-assisted surgery vs conventional instrumentation in primary total knee arthroplasty. J Arthroplasty 26(8):1273–1284CrossRefPubMedGoogle Scholar
  2. 2.
    Barrack RL, Schrader T, Bertot AJ, Wolfe MW, Myers L (2001) Component rotation and anterior knee pain after total knee arthroplasty. Clin Orthop Relat Res 392:46–55CrossRefGoogle Scholar
  3. 3.
    Blankevoort L, Kuiper JH, Huiskes R, Grootenboer HJ (1991) Articular contact in a three-dimensional model of the knee. J Biomech 24(11):1019–1031CrossRefPubMedGoogle Scholar
  4. 4.
    Colwell CW Jr, Chen PC, D’Lima D (2011) Extensor malalignment arising from femoral component malrotation in knee arthroplasty: effect of rotating–bearing. Clin Biomech (Bristol, Avon) 26(1):52–57CrossRefGoogle Scholar
  5. 5.
    Dejour D, Saffarini M, Demey G, Baverel L (2015) Tibial slope correction combined with second revision ACL produces good knee stability and prevents graft rupture. Knee Surg Sports Traumatol Arthrosc 23:2846–2852CrossRefPubMedGoogle Scholar
  6. 6.
    Dennis DA, Komistek RD, Mahfouz MR (2003) In vivo fluoroscopic analysis of fixed-bearing total knee replacements. Clin Orthop Relat Res 410:114–130CrossRefGoogle Scholar
  7. 7.
    D’Lima DD, Poole C, Chadha H, Hermida JC, Mahar A, Colwell CW Jr (2001) Quadriceps moment arm and quadriceps forces after total knee arthroplasty. Clin Orthop Relat Res 392:213–220CrossRefGoogle Scholar
  8. 8.
    Hamai S, Miura H, Higaki H, Matsuda S, Shimoto T, Sasaki K, Yoshizumi M, Okazaki K, Tsukamoto N, Iwamoto Y (2008) Kinematic analysis of kneeling in cruciate-retaining and posterior-stabilized total knee arthroplasties. J Orthop Res 26(4):435–442CrossRefPubMedGoogle Scholar
  9. 9.
    Hamai S, Okazaki K, Shimoto T, Nakahara H, Higaki H, Iwamoto Y (2015) Continuous sagittal radiological evaluation of stair-climbing in cruciate-retaining and posterior-stabilized total knee arthroplasties using image-matching techniques. J Arthroplasty 30(5):864–869CrossRefPubMedGoogle Scholar
  10. 10.
    Kim YH, Park JW, Kim JS, Park SD (2014) The relationship between the survival of total knee arthroplasty and postoperative coronal, sagittal and rotational alignment of knee prosthesis. Int Orthop 38:379–385CrossRefPubMedGoogle Scholar
  11. 11.
    Kuroyanagi Y, Mu S, Hamai S, Robb WJ, Banks SA (2012) In vivo knee kinematics during stair and deep flexion activities in patients with bicruciate substituting total knee arthroplasty. J Arthroplasty 27(1):122–128CrossRefPubMedGoogle Scholar
  12. 12.
    Kuwashima U, Hamai S, Okazaki K, Ikebe S, Higaki H, Mizu-Uchi H, Akasaki Y, Murakami K, Iwamoto Y (2016) Contact stress analysis of the anterior tibial post in bi-cruciate stabilized and mobile-bearing posterior stabilized total knee arthroplasty designs. J Mech Behav Biomed Mater 60:460–467CrossRefPubMedGoogle Scholar
  13. 13.
    Li G, Papannagari R, Most E, Park SE, Johnson T, Tanamal L, Rubash HE (2005) Anterior tibial post impingement in a posterior stabilized total knee arthroplasty. J Orthop Res 23(3):536–541CrossRefPubMedGoogle Scholar
  14. 14.
    Matsuda S, Kawahara S, Okazaki K, Tashiro Y, Iwamoto Y (2013) Postoperative alignment and ROM affect patient satisfaction after TKA. Clin Orthop Relat Res 471(1):127–133CrossRefPubMedGoogle Scholar
  15. 15.
    Mihalko WM, Conner DJ, Benner R, Williams JL (2012) How does TKA kinematics vary with transverse plane alignment changes in a contemporary implant? Clin Orthop Relat Res 470(1):186–192CrossRefPubMedGoogle Scholar
  16. 16.
    Mizu-uchi H, Colwell CW Jr, Matsuda S, Flores-Hernandez C, Iwamoto Y, D’Lima DD (2011) Effect of total knee arthroplasty implant position on flexion angle before implant-bone impingement. J Arthroplasty 26(5):721–727CrossRefPubMedGoogle Scholar
  17. 17.
    Mizu-Uchi H, Colwell CW Jr, Fukagawa S, Matsuda S, Iwamoto Y, D’Lima DD (2012) The importance of bony impingement in restricting flexion after total knee arthroplasty: computer simulation model with clinical correlation. J Arthroplasty 27(9):1710–1716CrossRefPubMedGoogle Scholar
  18. 18.
    Morra EA, Heim CS, Greenwald AS (2012) Preclinical computational models: predictors of tibial insert damage patterns in total knee arthroplasty: AAOS exhibit selection. J Bone Surg Am 94(18):e137(1–5)CrossRefGoogle Scholar
  19. 19.
    Okamoto S, Mizu-uchi H, Okazaki K, Hamai S, Nakahara H, Iwamoto Y (2015) Effect of tibial posterior slope on knee kinematics, quadriceps force, and patellofemoral contact force after posterior-stabilized total knee arthroplasty. J Arthroplasty 30(8):1439–1943CrossRefPubMedGoogle Scholar
  20. 20.
    Ostermeier S, Hurschler C, Windhagen H, Stukenborg-Colsman C (2006) In vitro investigation of the influence of tibial slope on quadriceps extension force after total knee arthroplasty. Knee Surg Sports Traumatol Arthrosc 14(10):934–939CrossRefPubMedGoogle Scholar
  21. 21.
    Sessa P, Fioravanti G, Giannicola G, Cinotti G (2015) The risk of sacrificing the PCL in cruciate retaining total knee arthroplasty and the relationship to the sagittal inclination of the tibial plateau. Knee 22:51–55CrossRefPubMedGoogle Scholar
  22. 22.
    Shi X, Shen B, Kang P, Yang J, Zhou Z, Pei F (2013) The effect of posterior tibial slope on knee flexion in posterior-stabilized total knee arthroplasty. Knee Surg Sports Traumatol Arthrosc 21(12):2696–2703CrossRefPubMedGoogle Scholar
  23. 23.
    Tanaka Y, Nakamura S, Kuriyama S, Ito H, Furu M, Komistek RD, Matsuda S (2016) How exactly can computer simulation predict the kinematics and contact status after TKA? Examination in individualized models. Clin Biomech (Bristol, Avon) 39:65–70CrossRefGoogle Scholar
  24. 24.
    Victor J, Mueller JK, Komistek RD, Sharma A, Nadaud MC, Bellemans J (2010) In vivo kinematics after a cruciate- substituting TKA. Clin Orthop Relat Res 468(3):807–814CrossRefPubMedGoogle Scholar
  25. 25.
    Wachowski MM, Walde TA, Balcarek P, Schüttrumpf JP, Frosch S, Stauffenberg C, Frosch KH, Fiedler C, Fanghänel J, Kubein-Meesenburg D, Nägerl H (2012) Total knee replacement with natural rollback. Ann Anat 194(2):195–199CrossRefPubMedGoogle Scholar
  26. 26.
    Walter SD, Eliasziw M, Donner A (1998) Sample size and optimal designs for reliability studies. Stat Med 17(1):101–110CrossRefPubMedGoogle Scholar
  27. 27.
    Wasielewski RC, Galante JO, Leighty RM, Natarajan RN, Rosenberg AG (1994) Wear patterns on retrieved polyethylene tibial inserts and their relationship to technical considerations during total knee arthroplasty. Clin Orthop Relat Res 299:31–43Google Scholar
  28. 28.
    Zeng C, Yang T, Wu S, Gao SG, Li H, Deng ZH, Zhang Y, Lei GH (2016) Is posterior tibial slope associated with noncontact anterior cruciate ligament injury. Knee Surg Sports Traumatol Arthrosc 24:830–837CrossRefPubMedGoogle Scholar

Copyright information

© European Society of Sports Traumatology, Knee Surgery, Arthroscopy (ESSKA) 2017

Authors and Affiliations

  • Masaru Hada
    • 1
    • 2
  • Hideki Mizu-uchi
    • 2
    Email author
  • Ken Okazaki
    • 3
  • Takao Kaneko
    • 1
  • Koji Murakami
    • 2
  • Yuan Ma
    • 2
  • Satoshi Hamai
    • 2
  • Yasuharu Nakashima
    • 2
  1. 1.Department of Orthopaedic SurgeryToho University School of MedicineTokyoJapan
  2. 2.Department of Orthopaedic Surgery, Graduate School of Medical SciencesKyushu UniversityFukuoka CityJapan
  3. 3.Department of Orthopaedic SurgeryTokyo Women’s Medical UniversityTokyoJapan

Personalised recommendations