Advertisement

Knee Surgery, Sports Traumatology, Arthroscopy

, Volume 26, Issue 4, pp 1110–1116 | Cite as

Sagittal femoral condyle morphology correlates with femoral tunnel length in anatomical single bundle ACL reconstruction

  • Takanori Iriuchishima
  • Freddie H. Fu
  • Keinosuke Ryu
  • Makoto Suruga
  • Yoshiyuki Yahagi
  • Shin Aizawa
Knee

Abstract

Purpose

The purpose of this study was to reveal the correlation between femoral tunnel length and the morphology of the femoral intercondylar notch in anatomical single bundle anterior cruciate ligament (ACL) reconstruction using three-dimensional computed tomography (3D-CT).

Methods

Thirty subjects undergoing anatomical single bundle ACL reconstruction were included in this study (23 female, 7 male: average age 45.5 ± 16.7). In the anatomical single bundle ACL reconstruction, the femoral and tibial tunnels were created close to the antero-medial bundle insertion site with trans-portal technique. Using post-operative three-dimensional computed tomography (3D-CT), accurate axial and lateral views of the femoral condyle were evaluated. The correlation of femoral tunnel length, which was measured intra-operatively, with the transepicondylar length (TEL), notch width index, notch outlet length, the notch area (axial), length of Blumensaat’s line, and the height and area of the lateral wall of the femoral intercondylar notch was statistically analyzed. Tunnel placement was also evaluated using a Quadrant method.

Results

The average femoral tunnel length was 35.4 ± 4.4 mm. The average TEL, NWI, notch outlet length, and the axial notch area, were 76.9 ± 5.1 mm, 29.1 ± 3.8%, 19.5 ± 3.9 mm, and 257.4 ± 77.4 mm2, respectively. The length of Blumensaat’s line and the height and area of the lateral wall of the femoral intercondylar notch were 33.8 ± 3.2 mm, 22.8 ± 2.3 mm, and 738.7 ± 129 mm2, respectively. The length of Blumensaat’s line, the height, and the area of the lateral wall of the femoral intercondylar notch were significantly correlated with femoral tunnel length. Femoral tunnel placement was 23.4 ± 4.5% in a shallow-deep direction and 35.4 ± 8.8% in a high-low direction.

Conclusion

The length of Blumensaat’s line, height, and area of the lateral wall of the femoral intercondylar notch are correlated with femoral tunnel length in anatomical single bundle ACL reconstruction. For clinical relevance, these parameters are useful in predicting the length of the femoral tunnel in anatomical single bundle ACL reconstruction for the prevention of extremely short femoral tunnel creation.

Level of evidence

Case controlled study, Level III.

Keywords

Anterior cruciate ligament Anatomy Tunnel length Femoral condyle 3D-CT 

Abbreviations

ACL

Anterior cruciate ligament

AM

Anteromedial bundle

PL

Posterolateral bundle

Notes

Compliance with ethical standards

Conflict of interest

Takanori Iriuchishima, Fu FH, Keinosuke Ryu, Makoto Suruga, Yoshiyuki Yahagi, and Sin Aizawa declare that they have no conflict of interest.

Ethical approval

This study was performed in accordance with the ethics principles of the Declaration of Helsinki and was conducted with the approval of the institutional review boards of the Kamimoku Hot springs Hospital.

References

  1. 1.
    Ahn JH, Jeong HJ, Ko CS, Ko TS, Kim JH (2013) Three-dimensional reconstruction computed tomography evaluation of tunnel location during single-bundle anterior cruciate ligament reconstruction: a comparison of transtibial and 2-incision tibial tunnel-independent techniques. Clin Orthop Surg 5(1):26–35CrossRefPubMedCentralPubMedGoogle Scholar
  2. 2.
    Bernard M, Hertel P, Hornung H, Cierpinski T (1997) Femoral insertion of the ACL. Radiographic quadrant method. Am J Knee Surg 10(1):14–21PubMedGoogle Scholar
  3. 3.
    Darcy SP, Kilger RH, Woo SL, Debski RF (2006) Estimation of ACL forces by reproducing knee kinematics between sets of knees: a novel noninvasive methodology. J Biomech 39(13):2371–2377CrossRefPubMedGoogle Scholar
  4. 4.
    Driscoll MD, Isabell GP Jr, Conditt MA, Ismaily SK, Jupiter DC, Noble PC, Lowe WR (2012) Comparison of 2 femoral tunnel locations in anatomic single-bundle anterior cruciate ligament reconstruction: a biomechanical study. Arthroscopy 28(10):1481–1489CrossRefPubMedGoogle Scholar
  5. 5.
    Ferretti M, Ekdahl M, Shen W, Fu FH (2007) Osseous landmarks of the femoral attachment of the anterior cruciate ligament: an anatomic study. Arthroscopy 23(11):1218–1225CrossRefPubMedGoogle Scholar
  6. 6.
    Fu FH, van Eck CF, Tashman S, Irrgang JJ, Moreland MS (2015) Anatomic anterior cruciate ligament reconstruction: a changing paradigm. Knee Surg Sports Traumatol Arthrosc 23(3):640–648CrossRefPubMedGoogle Scholar
  7. 7.
    Harner CD, Baek GH, Vogrin TM et al (1999) Quantitative analysis of human cruciate ligament insertions. Arthroscopy 15(7):741–749CrossRefPubMedGoogle Scholar
  8. 8.
    Iriuchishima T, Ryu K, Aizawa S, Fu FH (2016) Blumensaat’s line is not always straight: morphological variations of the lateral wall of the femoral intercondylar notch. Knee Surg Sports Traumatol Arthrosc 24(9):2752–2757CrossRefPubMedGoogle Scholar
  9. 9.
    Iriuchishima T, Ryu K, Aizawa S, Fu FH (2016) The difference in centre position in the ACL femoral footprint inclusive and exclusive of the fan-like extension fibres. Knee Surg Sports Traumatol Arthrosc 24(1):254–259CrossRefPubMedGoogle Scholar
  10. 10.
    Iriuchishima T, Ingham SJ, Tajima G et al (2010) Evaluation of the tunnel placement in the anatomical double-bundle ACL reconstruction: a cadaver study. Knee Surg Sports Traumatol Arthrosc 18(9):1226–1231CrossRefPubMedGoogle Scholar
  11. 11.
    Iriuchishima T, Shirakura K, Fu FH (2013) Graft impingement in anterior cruciate ligament reconstruction. Knee Surg Sports Traumatol Arthrosc 21(3):664–670CrossRefPubMedGoogle Scholar
  12. 12.
    Iriuchishima T, Ryu K, Aizawa S, Fu FH (2015) Proportional evaluation of anterior cruciate ligament footprint size and knee bony morphology. Knee Surg Sports Traumatol Arthrosc 23(11):3157–3162CrossRefPubMedGoogle Scholar
  13. 13.
    Karlsson J, Irrgang JJ, van Eck CF, Samuelsson K, Mejia HA, Fu FH (2011) Anatomic single- and double-bundle anterior cruciate ligament reconstruction. Part 2: clinical application of surgical technique. Am J Sports Med 39(9):2016–2026CrossRefPubMedGoogle Scholar
  14. 14.
    Kato Y, Maeyama A, Lertwanich P, Wang JH, Ingham SJ, Kramer S, Martins CQ, Smolinski P, Fu FH (2013) Biomechanical comparison of different graft positions for single-bundle anterior cruciate ligament reconstruction. Knee Surg Sports Traumatol Arthrosc 21(4):816–823CrossRefPubMedGoogle Scholar
  15. 15.
    Kawaguchi Y, Kondo E, Takeda R, Akita K, Yasuda K, Amis AA (2015) The role of fibers in the femoral attachment of the anterior cruciate ligament in resisting tibial displacement. Arthroscopy 31(3):435–444CrossRefPubMedCentralPubMedGoogle Scholar
  16. 16.
    Kondo E, Yasuda K, Azuma H, Tanabe Y, Yagi T (2008) Prospective clinical comparisons of anatomic double-bundle versus single-bundle anterior cruciate ligament reconstruction procedures in 328 consecutive patients. Am J Sports Med 36(9):1675–1687CrossRefPubMedGoogle Scholar
  17. 17.
    Kopf S, Musahl V, Tashman S, Szczodry M, Shen W, Fu FH (2009) A systematic review of the femoral origin and tibial insertion morphology of the ACL. Knee Surg Sports Traumatol Arthrosc 17(3):213–219CrossRefPubMedGoogle Scholar
  18. 18.
    Kopf S, Pombo MW, Szczodry M, Irrgang JJ, Fu FH (2011) Size variability of the human anterior cruciate ligament insertion sites. Am J Sports Med 39(1):108–1013CrossRefPubMedGoogle Scholar
  19. 19.
    Lee KW, Hwang YS, Chi YJ, Yang DS, Kim HY, Choy WS (2014) Anatomic Single Bundle Anterior Cruciate Ligament Reconstruction by Low Accessory Anteromedial Portal Technique: An In Vivo 3D CT Study. Knee Surg Relat Res 26(2):97–105CrossRefPubMedCentralPubMedGoogle Scholar
  20. 20.
    Loh JC, Fukuda Y, Tsuda E, Steadman RJ, Fu FH, Woo SL (2003) Knee stability and graft function following anterior cruciate ligament reconstruction: comparison between 11 o’clock and 10 o’clock femoral tunnel placement. Arthroscopy 19(3):297–304CrossRefPubMedGoogle Scholar
  21. 21.
    Luites JW, Wymenga AB, Blankevoort L et al (2007) Description of the attachment geometry of the anteromedial and posterolateral bundles of the ACL from arthroscopic perspective for anatomical tunnel placement. Knee Surg Sports Traumatol Arthrosc 15(12):1422–1431CrossRefPubMedCentralPubMedGoogle Scholar
  22. 22.
    Maeyama A, Hoshino Y, Debandi A et al (2011) Evaluation of rotational instability in the anterior cruciate ligament deficient knee using triaxial accelerometer: a biomechanical model in porcine knees. Knee Surg Sports Traumatol Arthrosc 19(8):1233–1238CrossRefPubMedGoogle Scholar
  23. 23.
    Muneta T, Koga H, Mochizuki T et al (2007) A prospective randomized study of 4-strand semitendinosus tendon anterior cruciate ligament reconstruction comparing single-bundle and double bundle techniques. Arthroscopy 23(6):618–628CrossRefPubMedGoogle Scholar
  24. 24.
    Nha KW, Han JH, Kwon JH, Kang KW, Park HJ, Song JG (2015) Anatomical Single-bundle Anterior Cruciate Ligament Reconstruction Using a Freehand Transtibial Technique. Knee Surg Relat Res 27(2):117–122CrossRefPubMedCentralPubMedGoogle Scholar
  25. 25.
    Rayan F, Nanjayan SK, Quah C, Ramoutar D, Konan S, Haddad FS (2015) Review of evolution of tunnel position in anterior cruciate ligament reconstruction. World J Orthop 6(2):252–262CrossRefPubMedCentralPubMedGoogle Scholar
  26. 26.
    Robin BN, Jani SS, Marvil SC, Reid JB, Schillhammer CK, Lubowitz JH (2015) Advantages and disadvantages of transtibial, anteromedial portal, and outside-in femoral tunnel drilling in single-bundle anterior cruciate ligament reconstruction: a systematic review. Arthroscopy 31(7):1412–1417CrossRefPubMedGoogle Scholar
  27. 27.
    Shino K, Nakata K, Nakamura N et al (2008) Rectangular tunnel double-bundle anterior cruciate ligament reconstruction with bone-patellar tendon-bone graft to mimic natural fiber arrangement. Arthroscopy 24(10):1178–1183CrossRefPubMedGoogle Scholar
  28. 28.
    Siebold R, Ellert T, Metz S et al (2008) Femoral insertions of the anteromedial and posterolateral bundles of the anterior cruciate ligament: morphometry and arthroscopic orientation models for double-bundle bone tunnel placement-a cadaver study. Arthroscopy 24(5):585–592CrossRefPubMedGoogle Scholar
  29. 29.
    Siebold R, Ellert T, Metz S et al (2008) Tibial insertions of the anteromedial and posterolateral bundles of the anterior cruciate ligament: morphometry, arthroscopic landmarks, and orientation model for bone tunnel placement. Arthroscopy 24(2):154–161CrossRefPubMedGoogle Scholar
  30. 30.
    Stijak L, Randonjic V, Nikolic V, Blagojevic Z, Aksic M, Filipovic B (2009) Correlation between the morphometric parameters of the anterior cruciate ligament and the intercondylar width: gender and age difference. Knee Surg Sports Traumatol Arthrosc 17:812–817CrossRefPubMedGoogle Scholar
  31. 31.
    Tashiro Y, Okazaki K, Uemura M, Toyoda K, Osaki K, Matsubara H, Hashizume M, Iwamoto Y (2014) Comparison of transtibial and transportal techniques in drilling femoral tunnels during anterior cruciate ligament reconstruction using 3D-CAD models. Open Access J Sports Med 5:65–72CrossRefPubMedCentralPubMedGoogle Scholar
  32. 32.
    Tompkins M, Ma R, Hogan MV, Miller MD (2011) What’s new in sports medicine. J Bone Jt Surg Am 93(8):789–797CrossRefGoogle Scholar
  33. 33.
    van Eck CF, Kopf S, van Dijk CN, Fu FH, Tashman S (2011) Comparison of 3-dimensional notch volume between subjects with and subjects without anterior cruciate ligament rupture. Arthroscopy 27:1235–1241CrossRefPubMedGoogle Scholar
  34. 34.
    Wolf MR, Murawski CD, van Diek FM, van Eck CF, Huang Y, Fu FH (2015) Intercondylar notch dimensions and graft failure after single- and double-bundle anterior cruciate ligament reconstruction. Knee Surg Sports Traumatol Arthrosc 23(3):680–686CrossRefPubMedGoogle Scholar
  35. 35.
    Wu E, Chen M, Cooperman D, Victoroff B, Goodfellow D, Farrow LD (2011) No correlation of height or gender with anterior cruciate ligament footprint size. J Knee Surg 24:39–43CrossRefPubMedGoogle Scholar
  36. 36.
    Yagi M, Wong EK, Kanamori A, Debski RE, Fu FH, Woo SL (2002) Biomechanical analysis of anatomic anterior cruciate ligament reconstruction. Am J Sports Med 30(5):660–666CrossRefPubMedGoogle Scholar
  37. 37.
    Yasuda K, Kondo E, Ichiyama H, Tanabe Y, Tohyama H (2006) Clinical evaluation of anatomic double-bundle anterior cruciate ligament reconstruction procedure using hamstring tendon grafts: comparisons among 3 different procedures. Arthroscopy 22(3):240–251CrossRefPubMedGoogle Scholar
  38. 38.
    Yasuda K, van Eck CF, Hoshino Y, Fu FH, Tashman S (2011) Anatomic single-and double-bundle anterior cruciate ligament reconstruction. Part 1: basic science. Am J Sports Med 39(8):1789–1799CrossRefPubMedGoogle Scholar
  39. 39.
    Youm YS, Cho SD, Lee SH, Youn CH (2014) Modified transtibial versus anteromedial portal technique in anatomic single-bundle anterior cruciate ligament reconstruction: comparison of femoral tunnel position and clinical results. Am J Sports Med 42(12):2941–2947CrossRefPubMedGoogle Scholar

Copyright information

© European Society of Sports Traumatology, Knee Surgery, Arthroscopy (ESSKA) 2017

Authors and Affiliations

  1. 1.Department of Orthopaedic SurgeryKamimoku Hot Springs HospitalMinakamiJapan
  2. 2.Department of Orthopaedic SurgeryNihon University HospitalTokyoJapan
  3. 3.Departments of Functional MorphologyNihon University School of MedicineTokyoJapan
  4. 4.Department of Orthopaedic SurgeryUniversity of PittsburghPittsburgUSA

Personalised recommendations