Skip to main content
Log in

Quantifying the pivot shift test: a systematic review

  • Knee
  • Published:
Knee Surgery, Sports Traumatology, Arthroscopy Aims and scope

Abstract

Purpose

This study aims to identify and summarize the evidence on the biomechanical parameters and the corresponding technologies which have been used to quantify the pivot shift test during the clinical and functional assessment of anterior cruciate ligament (ACL) injury and surgical reconstruction.

Methods

Search strategy Internet search of indexed scientific articles on the PubMed database, Web of Science and references on published manuscripts. No year restriction was used. Selection criteria Articles included were written only in English and related to search terms: “pivot shift” AND (OR “ACL”). The reviewers independently selected only those studies that included at least one quantitative parameter for the analysis of the pivot shift test, including both in vitro and in vivo analyses performed on human joint. Those studies that analysed only clinical grading were excluded from the analysis. Analysis After evaluating the methodological quality of the articles, the parameters found were summarized.

Results

Six hundred and eight studies met the inclusion criteria, and finally, 68 unique studies were available for the systematic review. Quantitative results were heterogeneous. The pivot shift test has been quantified by means of 25 parameters, but most of the studies focused on anterior-posterior translations, internal–external rotation and acceleration in anterior-posterior direction.

Conclusion

Several methodologies have been identified and developed to quantify pivot shift test. However, clinical professionals are still lacking a ‘gold standard’ method for the quantification of knee joint dynamic laxity. A widespread adoption of a standardized pivot shift manoeuvre and measurement method to allow objective comparison of the results of ACL reconstructions is therefore desirable. Further development of measurement methods is indeed required to achieve this goal in a routine clinical scenario.

Level of Evidence

Systematic review of—at least—level II studies, Level II.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Ahldén M, Hoshino Y, Samuelsson K, Araujo P, Musahl V, Karlsson J (2012) Dynamic knee laxity measurement devices. Knee Surg Sports Traumatol Arthrosc 20(4):621–632

    Article  PubMed  Google Scholar 

  2. Ahldén M, Araujo P, Hoshino Y, Samuelsson K, Middleton KK, Nagamune K, Karlsson J, Musahl V (2012) Clinical grading of the pivot shift test correlates best with tibial acceleration. Knee Surg Sports Traumatol Arthrosc 20(4):708–712

    Article  PubMed  Google Scholar 

  3. Anderson AF, Rennirt GW, Standeffer WC (2000) Clinical analysis of the pivot shift tests: description of the pivot drawer test. Am J Knee Surg 13(1):19–23 (discussion 23–24)

    PubMed  CAS  Google Scholar 

  4. Anderson CJ, Westerhaus BD, Pietrini SD, Ziegler CG, Wijdicks CA, Johansen S, Engebretsen L, Laprade RF (2010) Kinematic impact of anteromedial and posterolateral bundle graft fixation angles on double-bundle anterior cruciate ligament reconstructions. Am J Sports Med 38(8):1575–1583

    Article  PubMed  Google Scholar 

  5. Araki D, Kuroda R, Kubo S, Fujita N, Tei K, Nishimoto K, Hoshino Y, Matsushita T, Matsumoto T, Nagamune K, Kurosaka M (2010) A prospective randomised study of anatomical single-bundle versus double-bundle anterior cruciate ligament reconstruction: quantitative evaluation using an electromagnetic measurement system. Int Orthop 35(3):439–446

    Article  PubMed  Google Scholar 

  6. Araujo PH, Ahlden M, Hoshino Y, Muller B, Moloney G, Fu FH, Musahl V (2012) Comparison of three non-invasive quantitative measurement systems for the pivot shift test. Knee Surg Sports Traumatol Arthrosc 20(4):692–697

    Article  PubMed  Google Scholar 

  7. Bach BR, Warren RF, Wickiewicz TL (1988) The pivot shift phenomenon: results and description of a modified clinical test for anterior cruciate ligament insufficiency. Am J Sports Med 16(6):571–576

    Article  PubMed  Google Scholar 

  8. Bedi A, Musahl V, Steuber V, Kendoff D, Choi D, Allen AA, Pearle AD, Altchek DW (2010) Transtibial versus anteromedial portal reaming in anterior cruciate ligament reconstruction: an anatomic and biomechanical evaluation of surgical technique. Arthroscopy 27(3):380–390

    PubMed  Google Scholar 

  9. Bedi A, Musahl V, Lane C, Citak M, Warren RF, Pearle AD (2010) Lateral compartment translation predicts the grade of pivot shift: a cadaveric and clinical analysis. Knee Surg Sports Traumatol Arthrosc 18(9):1269–1276

    Article  PubMed  Google Scholar 

  10. Bedi A, Musahl V, O’Loughlin P, Maak T, Citak M, Dixon P, Pearle AD (2010) A comparison of the effect of central anatomical single-bundle anterior cruciate ligament reconstruction and double-bundle anterior cruciate ligament reconstruction on pivot-shift kinematics. Am J Sports Med 38(9):1788–1794

    Article  PubMed  Google Scholar 

  11. Bedi A, Maak T, Musahl V, O’Loughlin P, Choi D, Citak M, Pearle AD (2011) Effect of tunnel position and graft size in single-bundle anterior cruciate ligament reconstruction: an evaluation of time-zero knee stability. Arthroscopy 27(11):1543–1551

    Article  PubMed  Google Scholar 

  12. Bedi A, Maak T, Musahl V, Citak M, O’Loughlin PF, Choi D, Pearle AD (2011) Effect of tibial tunnel position on stability of the knee after anterior cruciate ligament reconstruction: is the tibial tunnel position most important? Am J Sports Med 39(2):366–373

    Article  PubMed  Google Scholar 

  13. Benjaminse A, Gokeler A, van der Schans CP (2006) Clinical diagnosis of an anterior cruciate ligament rupture: a meta-analysis. J Orthop Sports Phys Ther 36(5):267–288

    PubMed  Google Scholar 

  14. Bignozzi S, Zaffagnini S, Lopomo N, Fu FH, Irrgang JJ, Marcacci M (2010) Clinical relevance of static and dynamic tests after anatomical double-bundle ACL reconstruction. Knee Surg Sports Traumatol Arthrosc 18(1):37–42

    Article  PubMed  Google Scholar 

  15. Bull AMJ, Berkshire FH, Amis AA (1998) Accuracy of an electromagnetic measurement device and application to the measurement and description of knee joint motion. Proc IMech E part H Eng in Med 212:347–355

    Article  CAS  Google Scholar 

  16. Bull AM, Amis AA (1998) Knee joint motion: description and measurement. Proc Inst Mech Eng H 212(5):357–372

    PubMed  CAS  Google Scholar 

  17. Bull AM, Andersen HNHN, Basso O, Targett J, Amis AA (1999) Incidence and mechanism of the pivot shift. An in vitro study. Clin Orthop Relat Res 363:219–231

    Article  PubMed  Google Scholar 

  18. Bull A, Earnshaw P, Smith A, Katchburian M, Hassan A, Amis A (2002) Intraoperative measurement of knee kinematics in reconstruction of the anterior cruciate ligament. J Bone Joint Surg Br 84(7):1075–1081

    Article  PubMed  CAS  Google Scholar 

  19. Citak M, Bosscher MRF, Citak M, Musahl V, Pearle AD, Suero EM (2011) Anterior cruciate ligament reconstruction after unicompartmental knee arthroplasty. Knee Surg Sports Traumatol Arthrosc 19(10):1683–1688

    Article  PubMed  Google Scholar 

  20. Citak M, Suero EM, Rozell JC, Bosscher MRF, Kuestermeyer J, Pearle AD (2011) A mechanized and standardized pivot shifter: technical description and first evaluation. Knee Surg Sports Traumatol Arthrosc 19(5):707–711

    Article  PubMed  Google Scholar 

  21. Citak M, O’Loughlin PF, Citak M, Suero EM, Bosscher MRF, Musahl V, Pearle AD (2012) Influence of the valgus force during knee flexion in neutral rotation. Knee Surg Sports Traumatol Arthrosc 20(8):1571–1574

    Article  PubMed  Google Scholar 

  22. Colombet P, Robinson J, Christel P, Franceschi J-P, Djian P (2007) Using navigation to measure rotation kinematics during ACL reconstruction. Clin Orthop Relat Res 454:59–65

    Article  PubMed  Google Scholar 

  23. Colombet PD, Robinson JR (2008) Computer-assisted, anatomic, double-bundle anterior cruciate ligament reconstruction. Arthroscopy 24(10):1152–1160

    Article  PubMed  Google Scholar 

  24. Colombet P (2011) Knee laxity control in revision anterior cruciate ligament reconstruction versus anterior cruciate ligament reconstruction and lateral tenodesis: clinical assessment using computer-assisted navigation. Am J Sports Med 39(6):1248–1254

    Article  PubMed  Google Scholar 

  25. Cross MB, Musahl V, Bedi A, O’Loughlin P, Hammoud S, Suero E, Pearle AD (2012) Anteromedial versus central single-bundle graft position: which anatomic graft position to choose? Knee Surg Sports Traumatol Arthrosc 20(7):1276–1281

    Article  PubMed  Google Scholar 

  26. Diermann N, Schumacher T, Schanz S, Raschke MJ, Petersen W, Zantop T (2009) Rotational instability of the knee: internal tibial rotation under a simulated pivot shift test. Arch Orthop Trauma Surg 129(3):353–358

    Article  PubMed  Google Scholar 

  27. Donaldson WF, Warren RF, Wickiewicz T (1985) A comparison of acute anterior cruciate ligament examinations. Initial versus examination under anesthesia. Am J Sports Med 13(1):5–10

    Article  PubMed  Google Scholar 

  28. Engebretsen L, Wijdicks CA, Anderson CJ, Westerhaus B, Laprade RF (2012) Evaluation of a simulated pivot shift test: a biomechanical study. Knee Surg Sports Traumatol Arthrosc 20(4):698–702

    Article  PubMed  Google Scholar 

  29. Espregueira-Mendes J, Pereira H, Sevivas N, Passos C, Vasconcelos JC, Monteiro A, Oliveira JM, Reis RL (2012) Assessment of rotatory laxity in anterior cruciate ligament-deficient knees using magnetic resonance imaging with Porto-knee testing device. Knee Surg Sports Traumatol Arthrosc 20(4):671–678

    Article  PubMed  Google Scholar 

  30. Fetto JF, Marshall JL (1979) Injury to the anterior cruciate ligament producing the pivot-shift sign. J Bone Joint Surg Am 61(5):710–714

    PubMed  CAS  Google Scholar 

  31. Fukuda Y, Woo SL-Y, Loh JC, Tsuda E, Tang P, McMahon PJ, Debski RE (2003) A quantitative analysis of valgus torque on the ACL: a human cadaveric study. J Orthop Res 21(6):1107–1112

    Article  PubMed  Google Scholar 

  32. Galano GJ, Suero EM, Citak M, Wickiewicz T, Pearle AD (2012) Relationship of native tibial plateau anatomy with stability testing in the anterior cruciate ligament-deficient knee. Knee Surg Sports Traumatol Arthrosc 20(11):2220–2224

    Article  PubMed  Google Scholar 

  33. Galway HR, MacIntosh DL (1980) The lateral pivot shift: a symptom and sign of anterior cruciate ligament insufficiency. Clin Orthop Relat Res 147:45–50

    PubMed  Google Scholar 

  34. Graham GP, Johnson S, Dent CM, Fairclough JA (1991) Comparison of clinical tests and the KT1000 in the diagnosis of anterior cruciate ligament rupture. Br J Sports Med 25(2):96–97

    Article  PubMed  CAS  Google Scholar 

  35. Harilainen A (1987) Evaluation of knee instability in acute ligamentous injuries. Ann Chir Gynaecol 76(5):269–273

    PubMed  CAS  Google Scholar 

  36. Hefti F, Müller W, Jakob RP, Stäubli HU (1993) Evaluation of knee ligament injuries with the IKDC form. Knee Surg Sports Traumatol Arthrosc 1(3–4):226–234

    Article  PubMed  CAS  Google Scholar 

  37. Hoshino Y, Kuroda R, Nagamune K, Yagi M, Mizuno K, Yamaguchi M, Muratsu H, Yoshiya S, Kurosaka M (2007) In vivo measurement of the pivot-shift test in the anterior cruciate ligament-deficient knee using an electromagnetic device. Am J Sports Med 35(7):1098–1104

    Article  PubMed  Google Scholar 

  38. Hoshino Y, Araujo P, Irrgang JJ, Fu FH, Musahl V (2012) An image analysis method to quantify the lateral pivot shift test. Knee Surg Sports Traumatol Arthrosc 20(4):703–707

    Article  PubMed  Google Scholar 

  39. Hoshino Y, Araujo P, Ahlden M, Moore CG, Kuroda R, Zaffagnini S, Karlsson J, Fu FH, Musahl V (2012) Standardized pivot shift test improves measurement accuracy. Knee Surg Sports Traumatol Arthrosc 20(4):732–736

    Article  PubMed  Google Scholar 

  40. Hughston JC, Norwood LA (1980) The posterolateral drawer test and external rotational recurvatum test for posterolateral rotatory instability of the knee. Clin Orthop Relat Res 147:82–87

    PubMed  Google Scholar 

  41. Ishibashi Y, Tsuda E, Yamamoto Y, Tsukada H, Toh S (2009) Navigation evaluation of the pivot-shift phenomenon during double-bundle anterior cruciate ligament reconstruction: is the posterolateral bundle more important? Arthroscopy 25(5):488–495

    Article  PubMed  Google Scholar 

  42. Izawa T, Okazaki K, Tashiro Y, Matsubara H, Miura H, Matsuda S, Hashizume M, Iwamoto Y (2011) Comparison of rotatory stability after anterior cruciate ligament reconstruction between single-bundle and double-bundle techniques. Am J Sports Med 39(7):1470–1477

    Article  PubMed  Google Scholar 

  43. Jain DK, Amaravati R, Sharma G (2009) Evaluation of the clinical signs of anterior cruciate ligament and meniscal injuries. Indian J Orthop. 43(4):375–378

    Article  PubMed  Google Scholar 

  44. Jakob RP, Stäubli HU, Deland JT (1987) Grading the pivot shift. Objective tests with implications for treatment. J Bone Joint Surg Br 69(2):294–299

    PubMed  CAS  Google Scholar 

  45. Jensen K (1990) Manual laxity tests for anterior cruciate ligament injuries. J Orthop Sports Phys Ther 11(10):474–481

    PubMed  CAS  Google Scholar 

  46. Johnson RJ (1983) The anterior cruciate ligament problem. Clin Orthop Relat Res 172:14–18

    PubMed  Google Scholar 

  47. Jonsson H, Riklund-Ahlström K, Lind J (2004) Positive pivot shift after ACL reconstruction predicts later osteoarthrosis: 63 patients followed 5–9 years after surgery. Acta Orthop Scand 75(5):594–599

    Article  PubMed  Google Scholar 

  48. Kanamori A, Woo SL, Ma CB, Zeminski J, Rudy TW, Li G, Livesay GA (2000) The forces in the anterior cruciate ligament and knee kinematics during a simulated pivot shift test: a human cadaveric study using robotic technology. Arthroscopy 16(6):633–639

    Article  PubMed  CAS  Google Scholar 

  49. Kanamori A, Zeminski J, Rudy TW, Li G, Fu FH, Woo SL-Y (2002) The effect of axial tibial torque on the function of the anterior cruciate ligament. Arthroscopy 18(4):394–398

    Article  PubMed  Google Scholar 

  50. Katz JW, Fingeroth RJ (1986) The diagnostic accuracy of ruptures of the anterior cruciate ligament comparing the Lachman test, the anterior drawer sign, and the pivot shift test in acute and chronic knee injuries. Am J Sports Med 14(1):88–91

    Article  PubMed  CAS  Google Scholar 

  51. Kendoff D, Citak M, Voos J, Pearle AD (2009) Surgical navigation in knee ligament reconstruction. Clin Sports Med 28(1):41–50

    Article  PubMed  CAS  Google Scholar 

  52. Kim SJ, Kim HK (1995) Reliability of the anterior drawer test, the pivot shift test, and the Lachman test. Clin Orthop Relat Res 317:237–242

    PubMed  Google Scholar 

  53. Kocher MS, Steadman JR, Briggs KK, Sterett WI, Hawkins RJ (2004) Relationships between objective assessment of ligament stability and subjective assessment of symptoms and function after Anterior Cruciate Ligament reconstruction. Am J Sports Med 32(3):629–634

    Article  PubMed  Google Scholar 

  54. Kondo E, Merican AM, Yasuda K, Amis A (2010) Biomechanical comparisons of knee stability after anterior cruciate ligament reconstruction between 2 clinically available transtibial procedures: anatomic double bundle versus single bundle. Am J Sports Med 38(7):1349–1358

    Article  PubMed  Google Scholar 

  55. Kondo E, Merican AM, Yasuda K, Amis A (2011) Biomechanical comparison of anatomic double-bundle, anatomic single-bundle, and nonanatomic single-bundle anterior cruciate ligament reconstructions. Am J Sports Med 39(2):279–288

    Article  PubMed  Google Scholar 

  56. Kubo S, Muratsu H, Yoshiya S, Mizuno K, Kurosaka M (2007) Reliability and usefulness of a new in vivo measurement system of the pivot shift. Clin Orthop Relat Res 454:54–58

    Article  PubMed  Google Scholar 

  57. Kujala UM, Nelimarkka O, Koskinen SK (1992) Relationship between the pivot shift and the configuration of the lateral tibial plateau. Arch Orthop Trauma Surg 111(4):228–229

    Article  PubMed  CAS  Google Scholar 

  58. Kuroda R, Hoshino Y, Kubo S, Araki D, Oka S, Nagamune K, Kurosaka M (2012) Similarities and differences of diagnostic manual tests for anterior cruciate ligament insufficiency: a global survey and kinematics assessment. Am J Sports Med 40(1):91–99

    Article  PubMed  Google Scholar 

  59. Kurosaka M, Yagi M, Yoshiya S, Muratsu H, Mizuno K (1999) Efficacy of the axially loaded pivot shift test for the diagnosis of a meniscal tear. Int Orthop 23(5):271–274

    Article  PubMed  CAS  Google Scholar 

  60. Labbe DR, de Guise JA, Godbout V, Grimard G, Baillargeon D, Lavigne P, Fernandes J, Massé V, Ranger P, Hagemeister N (2010) Accounting for velocity of the pivot shift test manoeuvre decreases kinematic variability. Knee 18(2):88–93

    Article  PubMed  Google Scholar 

  61. Labbe DR, de Guise JA, Mezghani N, Godbout V, Grimard G, Baillargeon D, Lavigne P, Fernandes J, Ranger P, Hagemeister N (2010) Feature selection using a principal component analysis of the kinematics of the pivot shift phenomenon. J Biomech 43(16):3080–3084

    Article  PubMed  Google Scholar 

  62. Lane CG, Warren RF, Stanford FC, Kendoff D, Pearle AD (2008) In vivo analysis of the pivot shift phenomenon during computer navigated ACL reconstruction. Knee Surg Sports Traumatol Arthrosc 16(5):487–492

    Article  PubMed  Google Scholar 

  63. Lane CG, Warren R, Pearle AD (2008) The pivot shift. J Am Acad Orthop Surg 16(12):679–688

    PubMed  Google Scholar 

  64. Larson RL (1983) Physical examination in the diagnosis of rotatory instability. Clin Orthop Relat Res 172:38–44

    PubMed  Google Scholar 

  65. Leitze Z, Losee RE, Jokl P, Johnson TR, Feagin JA (2005) Implications of the pivot shift in the ACL-deficient knee. Clin Orthop Relat Res 436:229–236

    Article  PubMed  Google Scholar 

  66. Lie DTT, Bull AMJ, Amis AA (2007) Persistence of the mini pivot shift after anatomically placed anterior cruciate ligament reconstruction. Clin Orthop Relat Res 457:203–209

    PubMed  Google Scholar 

  67. Lopomo N, Zaffagnini S, Bignozzi S, Visani A, Marcacci M (2010) Pivot-shift test: analysis and quantification of knee laxity parameters using a navigation system. J Orthop Res 28(2):164–169

    PubMed  Google Scholar 

  68. Lopomo N, Zaffagnini S, Signorelli C, Bignozzi S, Giordano G, Marcheggiani Muccioli GM, Visani A (2011) An original clinical methodology for non-invasive assessment of pivot-shift test. Comput Methods Biomech Biomed Engin 15(12):1323–1328

    Article  PubMed  Google Scholar 

  69. Lopomo N, Signorelli C, Bonanzinga T, Marcheggiani Muccioli GM, Visani A, Zaffagnini S (2012) Quantitative assessment of pivot-shift using inertial sensors. Knee Surg Sports Traumatol Arthrosc 20(4):713–717

    Article  PubMed  Google Scholar 

  70. Losee RE (1983) Concepts of the pivot shift. Clin Orthop Relat Res 172:45–51

    PubMed  Google Scholar 

  71. Losee RE (1985) Diagnosis of chronic injury to the anterior cruciate ligament. Orthop Clin North Am 16(1):83–97

    PubMed  CAS  Google Scholar 

  72. Lucie RS, Wiedel JD, Messner DG (1984) The acute pivot shift: clinical correlation. Am J Sports Med 12(3):189–191

    Article  PubMed  CAS  Google Scholar 

  73. Markolf KL, Park S, Jackson SR, McAllister DR (2008) Simulated pivot-shift testing with single and double-bundle anterior cruciate ligament reconstructions. J Bone Joint Surg Am 90(8):1681–1689

    Article  PubMed  Google Scholar 

  74. Markolf KL, Jackson SR, McAllister DR (2010) A comparison of 11 o’clock versus oblique femoral tunnels in the anterior cruciate ligament-reconstructed knee: knee kinematics during a simulated pivot test. Am J Sports Med 38(5):912–917

    Article  PubMed  Google Scholar 

  75. Markolf KL, Jackson SR, McAllister DR (2010) Relationship between the pivot shift and Lachman tests: a cadaver study. J Bone Joint Surg Am 92(11):2067–2075

    Article  PubMed  Google Scholar 

  76. Matsumoto H (1990) Mechanism of the pivot shift. J Bone Joint Surg Br 72(5):816–821

    PubMed  CAS  Google Scholar 

  77. Matsumoto H, Seedhom B (1994) Treatment of the pivot-shift intraarticular versus extraarticular or combined reconstruction procedures. A biomechanical study. Clin Orthop Relat Res 299:298–304

    PubMed  Google Scholar 

  78. Milne AD, Chess DG, Johnson JA, King GJW (1996) Accuracy of an electromagnetic tracking device: a study of the optimal operating range and metal interference. J Biomech 29(6):791–793

    Article  PubMed  CAS  Google Scholar 

  79. Musahl V, Citak M, O’Loughlin PF, Choi D, Bedi A, Pearle AD (2010) The effect of medial versus lateral meniscectomy on the stability of the anterior cruciate ligament-deficient knee. Am J Sports Med 38(8):1591–1597

    Article  PubMed  Google Scholar 

  80. Musahl V, Voos J, O’Loughlin PF, Stueber V, Kendoff D, Pearle AD (2010) Mechanized pivot shift test achieves greater accuracy than manual pivot shift test. Knee Surg Sports Traumatol Arthrosc 18(9):1208–1213

    Article  PubMed  Google Scholar 

  81. Musahl V, Voos JE, O’Loughlin PF, Choi D, Stueber V, Kendoff D, Pearle AD (2010) Comparing stability of different single- and double-bundle anterior cruciate ligament reconstruction techniques: a cadaveric study using navigation. Arthroscopy 26(9 Suppl):S41–S48

    PubMed  Google Scholar 

  82. Musahl V, Bedi A, Citak M, O’Loughlin P, Choi D, Pearle AD (2011) Effect of single-bundle and double-bundle anterior cruciate ligament reconstructions on pivot-shift kinematics in anterior cruciate ligament- and meniscus-deficient knees. Am J Sports Med 39(2):289–295

    Article  PubMed  Google Scholar 

  83. Musahl V, Hoshino Y, Ahlden M, Araujo P, Irrgang JJ, Zaffagnini S, Karlsson J, Fu FH (2012) The pivot shift: a global user guide. Knee Surg Sports Traumatol Arthrosc 20(4):724–731

    Article  PubMed  Google Scholar 

  84. Nakamura S, Kobayashi M, Asano T, Arai R, Nakagawa Y, Nakamura T (2011) Image-matching technique can detect rotational and AP instabilities in chronic ACL-deficient knees. Knee Surg Sports Traumatol Arthrosc 19(Suppl 1):S69–S76

    Article  PubMed  Google Scholar 

  85. Noyes FR, Grood ES, Cummings JF, Wroble RR (1991) An analysis of the pivot shift phenomenon: the knee motions and subluxations induced by different examiners. Am J Sports Med 19(2):148–155

    Article  PubMed  CAS  Google Scholar 

  86. Okazaki K, Miura H, Matsuda S, Yasunaga T, Nakashima H, Konishi K, Iwamoto Y, Hashizume M (2007) Assessment of anterolateral rotatory instability in the anterior cruciate ligament-deficient knee using an open magnetic resonance imaging system. Am J Sports Med 35(7):1091–1097

    Article  PubMed  Google Scholar 

  87. Okazaki K, Tashiro Y, Izawa T, Matsuda S, Iwamoto Y (2012) Rotatory laxity evaluation of the knee using modified Slocum’s test in open magnetic resonance imaging. Knee Surg Sports Traumatol Arthrosc 20(4):679–685

    Article  PubMed  Google Scholar 

  88. Ostrowski JA (2006) Accuracy of 3 diagnostic tests for anterior cruciate ligament tears. J Athl Train 41(1):120–121

    PubMed  Google Scholar 

  89. Petrigliano FA, Musahl V, Suero EM, Citak M, Pearle AD (2011) Effect of meniscal loss on knee stability after single-bundle anterior cruciate ligament reconstruction. Knee Surg Sports Traumatol Arthrosc 19(Suppl 1):S86–S93

    Article  PubMed  Google Scholar 

  90. Plaweski S, Petek D, Saragaglia D (2011) Morphometric analysis and functional correlation of tibial and femoral footprints in anatomical and single bundle reconstructions of the anterior cruciate ligament of the knee. Orthop Traumatol Surg Res 6 Suppl:S75–S79

    Google Scholar 

  91. Plaweski S, Grimaldi M, Courvoisier A, Wimsey S (2011) Intraoperative comparisons of knee kinematics of double-bundle versus single-bundle anterior cruciate ligament reconstruction. Knee Surg Sports Traumatol Arthrosc 19(8):1277–1286

    Article  PubMed  Google Scholar 

  92. Prins M (2006) The Lachman test is the most sensitive and the pivot shift the most specific test for the diagnosis of ACL rupture. Aust J Physiother 52(1):66

    Article  PubMed  Google Scholar 

  93. Robinson J, Carrat L, Granchi C, Colombet P (2007) Influence of anterior cruciate ligament bundles on knee kinematics: clinical assessment using computer-assisted navigation. Am J Sports Med 35(12):2006–2013

    Article  PubMed  Google Scholar 

  94. Sandberg R, Balkfors B, Henricson A, Westlin N (1986) Stability tests in knee ligament injuries. Arch Orthop Trauma Surg 106(1):5–7

    Article  PubMed  CAS  Google Scholar 

  95. Scholten RJPM, Opstelten W, van der Plas CG, Bijl D, Deville WLJM, Bouter LM (2003) Accuracy of physical diagnostic tests for assessing ruptures of the anterior cruciate ligament: a meta-analysis. J Fam Pract 52(9):689–694

    PubMed  Google Scholar 

  96. Slocum DB, James SL, Larson RL, Singer KM (1976) Clinical test for anterolateral rotary instability of the knee. Clin Orthop Relat Res 118:63–69

    PubMed  Google Scholar 

  97. Snyder-Mackler L, Fitzgerald GK, Bartolozzi AR III, Ciccotti MG (1997) The relationship between passive joint laxity and functional outcome after anterior cruciate ligament injury. Am J Sports Med 25(2):191–195

    Article  PubMed  CAS  Google Scholar 

  98. Suero EM, Citak M, Choi D, Bosscher MRF, Citak M, Pearle AD, Plaskos C (2011) Software for compartmental translation analysis and virtual three-dimensional visualization of the pivot shift phenomenon. Comput Aided Surg 16(6):298–303

    Article  PubMed  Google Scholar 

  99. Tashiro Y, Okazaki K, Miura H, Matsuda S, Yasunaga T, Hashizume M, Nakanishi Y, Iwamoto Y (2009) Quantitative assessment of rotatory instability after anterior cruciate ligament reconstruction. Am J Sports Med 37(5):909–916

    Article  PubMed  Google Scholar 

  100. Terry GC, Norwood LA, Hughston JC, Caldwell KM (1993) How iliotibial tract injuries of the knee combine with acute anterior cruciate ligament tears to influence abnormal anterior tibial displacement. Am J Sports Med 21(1):55–60

    Article  PubMed  CAS  Google Scholar 

  101. Tibone JE, Antich TJ, Fanton GS, Moynes DR, Perry J (1986) Functional analysis of anterior cruciate ligament instability. Am J Sports Med 14(4):276–284

    Article  PubMed  CAS  Google Scholar 

  102. Tsai AG, Wijdicks CA, Walsh MP, Laprade RF (2010) Comparative kinematic evaluation of all-inside single-bundle and double-bundle anterior cruciate ligament reconstruction: a biomechanical study. Am J Sports Med 38(2):263–272

    Article  PubMed  Google Scholar 

  103. Voos JE, Musahl V, Maak TG, Wickiewicz TL, Pearle AD (2010) Comparison of tunnel positions in single-bundle anterior cruciate ligament reconstructions using computer navigation. Knee Surg Sports Traumatol Arthrosc 18(9):1282–1289

    Article  PubMed  Google Scholar 

  104. Voos JE, Suero EM, Citak M, Petrigliano FP, Bosscher MRF, Citak M, Wickiewicz TL, Pearle AD (2012) Effect of tibial slope on the stability of the anterior cruciate ligament-deficient knee. Knee Surg Sports Traumatol Arthrosc 20(8):1626–1631

    Article  PubMed  Google Scholar 

  105. Xu Y, Liu J, Kramer S, Martins C, Kato Y, Linde-Rosen M, Smolinski P, Fu FH (2011) Comparison of in situ forces and knee kinematics in anteromedial and high anteromedial bundle augmentation for partially ruptured anterior cruciate ligament. Am J Sports Med 39(2):272–278

    Article  PubMed  Google Scholar 

  106. Yagi M, Kuroda R, Nagamune K, Yoshiya S, Kurosaka M (2007) Double-bundle ACL reconstruction can improve rotational stability. Clin Orthop Relat Res 454:100–107

    Article  PubMed  Google Scholar 

  107. Yamamoto Y, W-hsiu Hsu, Fisk JA, Van Scyoc AH, Miura K, Woo SL-Y (2006) Effect of the iliotibial band on knee biomechanics during a simulated pivot shift test. J Orthop Res 24(5):967–973

    Article  PubMed  Google Scholar 

  108. Yamamoto Y, Ishibashi Y, Tsuda E, Tsukada H, Maeda S, Toh S (2010) Comparison between clinical grading and navigation data of knee laxity in ACL-deficient knees. Sports Med Arthrosc Rehabil Ther Technol 2:27

    Article  PubMed  Google Scholar 

  109. Zantop T, Schumacher T, Diermann N, Schanz S, Raschke MJ, Petersen W (2007) Anterolateral rotational knee instability: role of posterolateral structures. Arch Orthop Trauma Surg 127(9):743–752

    Article  PubMed  Google Scholar 

  110. Zantop T, Diermann N, Schumacher T, Schanz S, Fu FH, Petersen W (2008) Anatomical and nonanatomical double-bundle anterior cruciate ligament reconstruction: importance of femoral tunnel location on knee kinematics. Am J Sports Med 36(4):678–685

    Article  PubMed  Google Scholar 

  111. Zaffagnini S, Marcheggiani Muccioli GM, Lopomo N, Signorelli C, Bonanzinga T, Musiani C, Vassilis P, Nitri M, Marcacci M (2012) Can the pivot-shift be eliminated by anatomic double-bundle anterior cruciate ligament reconstruction? Knee Surg Sports Traumatol Arthrosc 20(4):743–751

    Article  PubMed  Google Scholar 

  112. Zaffagnini S, Signorelli C, Lopomo N, Bonanzinga T, Marcheggiani Muccioli GM, Bignozzi S, Visani A, Marcacci M (2012) Anatomic double-bundle and over-the-top single-bundle with additional extra-articular tenodesis: an in vivo quantitative assessment of knee laxity in two different ACL reconstructions. Knee Surg Sports Traumatol Arthrosc 20(1):153–159

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicola Lopomo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lopomo, N., Zaffagnini, S. & Amis, A.A. Quantifying the pivot shift test: a systematic review. Knee Surg Sports Traumatol Arthrosc 21, 767–783 (2013). https://doi.org/10.1007/s00167-013-2435-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00167-013-2435-x

Keywords

Navigation