Skip to main content
Log in

Reliability of leg alignment using the OrthoPilot system depends on knee position: a cadaveric study

  • Knee
  • Published:
Knee Surgery, Sports Traumatology, Arthroscopy Aims and scope

Abstract

Despite the increase in clinical use of navigation systems in total knee arthroplasty, few studies have focused on the reproducibility of these systems. The aim of the present study was to assess the influence of knee position and observer experience on intra- and inter-observer agreement in limb alignment assessment with the OrthoPilot system. Limb alignment in the coronal plane and extension range of the knee were assessed in four embalmed cadaveric specimens by five independent observers and measurements were repeated four times to determine intra- and inter-observer agreement, expressed as intraclass correlation coefficients (ICCs). Additionally, navigation results were compared against figures from conventional measurement of leg alignment (ground truth). Intra- and inter-observer agreements were excellent for assessing the extension range (ICC, 0.97 and 0.95) and the coronal femuro-tibial axis in knee extension (ICC, 0.92 and 0.88) but were generally worse in knee flexion (ICC, 0.62 and 0.55). There was an increased tendency of intraobserver errors in observers with less clinical experience. Mean correlation with conventional measurements was fair (Spearman’s rho 0.61). The OrthoPilot system showed excellent reproducibility for assessment of extension range and coronal limb alignment. However, assessments of coronal limb alignment in flexion were prone to error and caution should be taken when relying on these measurements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Abbot LC, Walter F, Carpenter WF (1945) Surgical approaches to the knee joint. J Bone Jt Surg Am 27:277–310

    Google Scholar 

  2. Bargren JH, Blaha JD, Freeman MA (1983) Alignment in total knee arthroplasty. Correlated biomechanical and clinical observations. Clin Orthop Relat Res 173:178–183

    PubMed  Google Scholar 

  3. Bathis H, Perlick L, Luring C, Kalteis T, Grifka J (2003) CT-based and CT-free navigation in knee prosthesis implantation. Results of a prospective study. Unfallchirurg 106:935–940

    PubMed  CAS  Google Scholar 

  4. Bathis H, Perlick L, Tingart M, Luring C, Zurakowski D, Grifka J (2004) Alignment in total knee arthroplasty. A comparison of computer-assisted surgery with the conventional technique. J Bone Jt Surg Br 86:682–687. doi:10.1302/0301-620X.86B5.14927

    Article  CAS  Google Scholar 

  5. Bathis H, Shafizadeh S, Paffrath T, Simanski C, Grifka J, Luring C (2006) Are computer assisted total knee replacements more accurately placed? A meta-analysis of comparative studies. Orthopade 35:1056–1065. doi:10.1007/s00132-006-1001-3

    Article  PubMed  CAS  Google Scholar 

  6. Bauwens K, Matthes G, Wich M, Gebhard F, Hanson B, Ekkernkamp A, Stengel D (2007) Navigated total knee replacement. A meta-analysis. J Bone Jt Surg Am 89:261–269. doi:10.2106/JBJS.F.00601

    Article  Google Scholar 

  7. Bejek Z, Solyom L, Szendroi M (2007) Experiences with computer navigated total knee arthroplasty. Int Orthop 31:617–622. doi:10.1007/s00264-006-0254-0

    Article  PubMed  Google Scholar 

  8. Bolognesi M, Hofmann A (2005) Computer navigation versus standard instrumentation for TKA: a single-surgeon experience. Clin Orthop Relat Res 440:162–169. doi:10.1097/01.blo.0000186561.70566.95

    Article  PubMed  Google Scholar 

  9. Caillouette JT, Anzel SH (1990) Fat embolism syndrome following the intramedullary alignment guide in total knee arthroplasty. Clin Orthop Relat Res 251:198–199

    PubMed  Google Scholar 

  10. Fleiss JL (1986) The design and analysis of clinical experiments. Wiley, New York

    Google Scholar 

  11. Goleski P, Warkentine B, Lo D, Gyuricza C, Kendoff D, Pearle AD (2008) Reliability of navigated lower limb alignment in high tibial osteotomies. Am J Sports Med 36:2179–2186. doi:10.1177/0363546508319314

    Article  PubMed  Google Scholar 

  12. Hinman RS, May RL, Crossley KM (2006) Is there an alternative to the full-leg radiograph for determining knee joint alignment in osteoarthritis? Arthritis Rheum 55:306–313. doi:10.1002/art.21836

    Article  PubMed  Google Scholar 

  13. Ishii Y, Ohmori G, Bechtold JE, Gustilo RB (1995) Extramedullary versus intramedullary alignment guides in total knee arthroplasty. Clin Orthop Relat Res 318:167–175

    PubMed  Google Scholar 

  14. Jeffery RS, Morris RW, Denham RA (1991) Coronal alignment after total knee replacement. J Bone Jt Surg Br 73:709–714

    CAS  Google Scholar 

  15. Jenny JY, Boeri C (2004) Low reproducibility of the intra-operative measurement of the transepicondylar axis during total knee replacement. Acta Orthop Scand 75:74–77. doi:10.1080/00016470410001708150

    Article  PubMed  Google Scholar 

  16. Jenny JY, Boeri C, Picard F, Leitner F (2004) Reproducibility of intra-operative measurement of the mechanical axes of the lower limb during total knee replacement with a non-image-based navigation system. Comput Aided Surg 9:161–165. doi:10.1080/10929080500095517

    Article  PubMed  Google Scholar 

  17. Jenny JY, Clemens U, Kohler S, Kiefer H, Konermann W, Miehlke RK (2005) Consistency of implantation of a total knee arthroplasty with a non-image-based navigation system: a case–control study of 235 cases compared with 235 conventionally implanted prostheses. J Arthroplasty 20:832–839. doi:10.1016/j.arth.2005.02.002

    Article  PubMed  Google Scholar 

  18. Kendoff D, Board TN, Citak M, Gardner MJ, Hankemeier S, Ostermeier S, Krettek C, Hufner T (2008) Navigated lower limb axis measurements: influence of mechanical weight-bearing simulation. J Orthop Res 26:553–561. doi:10.1002/jor.20510

    Article  PubMed  Google Scholar 

  19. Kendoff D, Citak M, Pearle A, Gardner MJ, Hankemeier S, Krettek C, Hufner T (2007) Influence of lower limb rotation in navigated alignment analysis: implications for high tibial osteotomies. Knee Surg Sports Traumatol Arthrosc 15:1003–1008. doi:10.1007/s00167-007-0308-x

    Article  PubMed  CAS  Google Scholar 

  20. Krettek C, Miclau T, Grun O, Schandelmaier P, Tscherne H (1998) Intraoperative control of axes, rotation and length in femoral and tibial fractures. Technical note. Injury 29(3):C29–C39. doi:10.1016/S0020-1383(98)95006-9

    Article  PubMed  Google Scholar 

  21. Laskin RS, Beksac B (2006) Computer-assisted navigation in TKA: where we are and where we are going. Clin Orthop Relat Res 452:127–131. doi:10.1097/01.blo.0000238823.78895.dc

    Article  PubMed  Google Scholar 

  22. Oberst M, Bertsch C, Lahm A, Wuerstlin S, Holz U (2006) Regression and correlation analysis of preoperative versus intraoperative assessment of axes during navigated total knee arthroplasty. Comput Aided Surg 11:87–91. doi:10.1080/10929080600632680

    Article  PubMed  Google Scholar 

  23. Reed SC, Gollish J (1997) The accuracy of femoral intramedullary guides in total knee arthroplasty. J Arthroplasty 12:677–682. doi:10.1016/S0883-5403(97)90141-8

    Article  PubMed  CAS  Google Scholar 

  24. Ritter MA, Faris PM, Keating EM, Meding JB (1994) Postoperative alignment of total knee replacement. Its effect on survival. Clin Orthop Relat Res 299:153–156

    PubMed  Google Scholar 

  25. Rosenberger RE, Fink C, Quirbach S, Attal R, Tecklenburg K, Hoser C (2008) The immediate effect of navigation on implant accuracy in primary mini-invasive unicompartmental knee arthroplasty. Knee Surg Sports Traumatol Arthrosc 16:1133–1140. doi:10.1007/s00167-008-0618-7

    Article  PubMed  Google Scholar 

  26. Rosenberger RE, Hoser C, Quirbach S, Attal R, Hennerbichler A, Fink C (2008) Improved accuracy of component alignment with the implementation of image-free navigation in total knee arthroplasty. Knee Surg Sports Traumatol Arthrosc 16:249–257. doi:10.1007/s00167-007-0420-y

    Article  PubMed  Google Scholar 

  27. Shrout PE, Fleiss JL (1979) Intraclass correlations: uses in assessing rater reliability. Psychol Bull 86:420–427. doi:10.1037/0033-2909.86.2.420

    Article  PubMed  CAS  Google Scholar 

  28. Specogna AV, Birmingham TB, Hunt MA, Jones IC, Jenkyn TR, Fowler PJ, Giffin JR (2007) Radiographic measures of knee alignment in patients with varus gonarthrosis: effect of weight bearing status and associations with dynamic joint load. Am J Sports Med 35:65–70. doi:10.1177/0363546506293024

    Article  PubMed  Google Scholar 

  29. Yaffe MA, Koo SS, Stulberg SD (2008) Radiographic and navigation measurements of TKA limb alignment do not correlate. Clin Orthop Relat Res 466:2736–2744. doi:10.1007/s11999-008-0427-9

    Article  PubMed  Google Scholar 

  30. Yau WP, Leung A, Chiu KY, Tang WM, Ng TP (2005) Intraobserver errors in obtaining visually selected anatomic landmarks during registration process in nonimage-based navigation-assisted total knee arthroplasty: a cadaveric experiment. J Arthroplasty 20:591–601. doi:10.1016/j.arth.2005.02.011

    Article  PubMed  CAS  Google Scholar 

  31. Yau WP, Leung A, Liu KG, Yan CH, Wong LL, Chiu KY (2007) Interobserver and intra-observer errors in obtaining visually selected anatomical landmarks during registration process in non-image-based navigation-assisted total knee arthroplasty. J Arthroplasty 22:1150–1161. doi:10.1016/j.arth.2006.10.010

    Article  PubMed  CAS  Google Scholar 

  32. Yau WP, Leung A, Liu KG, Yan CH, Wong LS, Chiu KY (2008) Errors in the identification of the transepicondylar and anteroposterior axes of the distal femur in total knee replacement using minimally-invasive and conventional approaches: a cadaver study. J Bone Jt Surg Br 90:520–526. doi:10.1302/0301-620X.90B4.19841

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Aesculap for providing the OrthoPilot system used in this study, and Prof. Martin Scaal from the University’s Institute for Anatomy, for granting access to the cadaveric specimens.

Conflict of interest statement

The authors state that there were no conflicts of interest for any of the authors. Observer D is an employee of Aesculap. With this exception, Aesculap was not involved in data acquisition. Aesculap was not involved in study design, data analysis and interpretation, or the writing of the manuscript and had no influence on the decision of publication of the study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Oliver Hauschild.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hauschild, O., Konstantinidis, L., Strohm, P.C. et al. Reliability of leg alignment using the OrthoPilot system depends on knee position: a cadaveric study. Knee Surg Sports Traumatol Arthrosc 17, 1143–1151 (2009). https://doi.org/10.1007/s00167-009-0825-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00167-009-0825-x

Keywords

Navigation