Formal Aspects of Computing

, Volume 30, Issue 3–4, pp 333–349 | Cite as

Alternative shaper: a model for automatic design generation

  • Filipe Santos
  • Krystian Kwiecinski
  • Ana de Almeida
  • Sara Eloy
  • Bruno Taborda
Original Article


This paper discusses the formalization of Alternative Shaper, a Spatial Grammar supplemented with procedural knowledge for supporting design generation. The nondeterministic process style perspective supports an exploratory and flexible specification of designs and the use of predicates relating shapes allow the confirmation of shape spatial restrictions on design processes. Although simple at this stage, Alternative Shaper actually offers interesting potentialities on design generation that may be improved soon with convenient abstractions.


Shape grammar Spatial grammar Automatic design generation Formal specification Applied formal methods 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. AgC98.
    Agarwal, M., Cagan, J.: A blend of different tastes: the language of coffeemakers. Environ Plann B 25, 205–226 (1998)CrossRefGoogle Scholar
  2. ATS16.
    Almeida A, Taborda B, Santos F, Kwiecinski K, Eloy S (2016) A genetic algorithm application for automatic layout design of modular residential homes. In: Proceedings of IEEE international conference on systems, man, and cybernetics, SMC2016Google Scholar
  3. BDS10.
    Beirão J, Mendes G, Duarte J, Stouffs R (2010) Implementing a Generative Urban Design Model. Grammar-based patterns for urban design. In: Proceedings of 28th conference on eCAADe, vol 28, pp 265–274Google Scholar
  4. Cha10.
    Chase, S.C.: Shape grammar implementations: the last 36 years (Shape grammar implementation: from theory to useable software). Presentation in Design Computing and Cognition workshop, Stuttgart (2010)Google Scholar
  5. Cha04.
    Chau HH (2004) Evaluation of a 3D shape grammar implementation. In: Gero JS (ed) Design Computation and Cognition ’04, pp 357–376Google Scholar
  6. DRS07.
    Duarte, J.P., Rocha, J.M., Soares, G.D.: Unveiling the structure of the Marrakech Medina: a shape grammar and an interpreter for generating urban form. Artif Intell Eng Design Anal Manuf 21, 317–349 (2007)Google Scholar
  7. Dua05.
    Duarte, J.P.: A discursive grammar for customizing mass housing: the case of Siza’s houses at Malagueira. Autom Constr 14(2), 265–275 (2005)CrossRefGoogle Scholar
  8. ElD12.
    Eloy, S., Duarte, J.P.: A transformation grammar-based methodology for housing rehabilitation. In: Gero, J.S. (ed.) Design computing and cognition, DCC’12. Springer (2012)Google Scholar
  9. End72.
    Enderton, H.B.: A mathematical introduction to logic. Academic Press, New York (1972)zbMATHGoogle Scholar
  10. Fle87.
    Flemming, U.: More than the sum of its parts: the grammar of Queen Anne houses. Environ Plan B 14, 323–350 (1987)CrossRefGoogle Scholar
  11. Gip99.
    Gips J (1999) Computer implementation of shape grammars. In: Workshop on shape computation (pp. 1–11). Retrieved from
  12. GAK08.
    Grobler F, Aksamija A, Kim H, Krishnamurti R, Hickerson C (2008) Ontologies and shape grammars: comunication between knowledge-based and generative systems. Springer Science + Business Media B.V., pp 23–80Google Scholar
  13. GrE11.
    Grasl T, Economou A (2011) GRAPE: using graph grammars to implement shape grammars. In: Proceedings of the 2011 symposium on simulation for architecture and urban design, pp 21–28Google Scholar
  14. GrE13.
    Grasl, T., Economou, A.: From topologies to shapes: parametric shape grammars implemented by graphs. Environ Plan B Plan Des 40, 905–922 (2013)CrossRefGoogle Scholar
  15. Hei94.
    Heisserman, J.: Generative geometric design. IEEE Comput Graph Appl 14, 37–45 (1994)CrossRefGoogle Scholar
  16. Jow06.
    Jowers I (2006) Computation with curved shapes:Towards freeform shape generation in design. Ph.D. thesis, The Open UniversityGoogle Scholar
  17. Kni89.
    Knight, T.W.: Transformations of De Stijl art: the paintings of Georges Vantongerloo and Fritz Glarner. Environ Plan B 16, 51–98 (1989)CrossRefGoogle Scholar
  18. Kni93.
    Knight, T.W.: Color Grammars: the representation of form and color in design. Leonardo 26, 117–124 (1993)CrossRefGoogle Scholar
  19. Kni03.
    Knight, T.: Computing with emergence. Environ Plan B Plan Des 30, 125–155 (2003)CrossRefGoogle Scholar
  20. KoE81.
    Koning, G., Eisenberg, J.: The language of the prairie: Frank Lloyd Wright’s prairie houses. Environ Plan B 8, 295–323 (1981)CrossRefGoogle Scholar
  21. Kri80.
    Krishnamurti, R.: The arithmetic of shapes. Environ Plan B 7, 463–484 (1980)CrossRefGoogle Scholar
  22. Kri81.
    Krishnamurti, R.: The construction of shapes. Environ Plan B 8, 5–40 (1981)CrossRefGoogle Scholar
  23. Kri92.
    Krishnamurti, R.: The maximal representation of a shape. Environ Plan B 19, 267–288 (1992)CrossRefGoogle Scholar
  24. KrS93.
    Krishnamurti R, Stouffs R (1993) Spatial grammars?: motivation, comparison, and new results. In: CAAD futures ’93, pp 57–74Google Scholar
  25. KrE92.
    Krishnamurti, R., Earl, C.F.: Shape recognition in three dimensions. Environ Plan B Plan Des 19, 585–603 (1992)CrossRefGoogle Scholar
  26. KrS97.
    Krishnamurti, R., Stouffs, R.: Spatial change: continuity, reversibility, and emergent shapes. Environ Plann B 24, 359–384 (1997)CrossRefGoogle Scholar
  27. KSA16.
    Kwiecinski K, Santos F, Almeida A, Taborda B, Eloy S (2016) Wood mass-customized housing: a dual computer implementation design strategy. In: Proceedings of conference eCAADe2016Google Scholar
  28. KuK12.
    Kui, Y., Krishnamurti, R.: A Paradigm for interpreting tractable shape grammars. Environ Plan B Plan Des 41(1), 110–137 (2012)Google Scholar
  29. LCW09.
    Li AI, Chen L, Wang Y, Chau HH (2009) Editing shapes in a prototype two- and three-dimensional shape grammar environment, computation: the new realm of architectural design. In: Proceedings of the 27th conference on eCAADe, pp 243–250Google Scholar
  30. Li02.
    Li AI (2002) A prototype interactive simulated shape grammar. Design e-ducation: connecting the Real and the Virtual. In: Proceedings of the 20th conference on eCAADe, pp 314–317Google Scholar
  31. Lie04.
    Liew H (2004) SGML: a meta-language for shape grammars, Ph.D. thesis, MITGoogle Scholar
  32. McK04.
    McGill M, Knight T (2004) Designing design-mediating software—the development of Shaper2D. In: Proceedings of the 22th conference on eCAADe, pp 119–127Google Scholar
  33. MCS12.
    McKay, A., Chase, S., Shea, K., Chau, H.H.: Spatial grammar implementation: from theory to useable software. Artif Intell Eng Des Anal Manuf 26(2), 143–159 (2012)CrossRefGoogle Scholar
  34. McC04.
    McCormack, J.P., Cagan, J.: Speaking the Buick language: capturing, understanding and exploring brand identity with shape grammars. Des Stud 25(1), 1–29 (2004)CrossRefGoogle Scholar
  35. Mit93.
    Mitchell W (1993) A computational view of design creativity. Modelling creativity and knowledge-based design. In: Gero J, Maher M (eds) Lawrence Erlbaum Associates, pp 25–42Google Scholar
  36. PRS11.
    Paio A, Reis J, Santos F, Lopes P, Eloy S, Rato V (2011) Emerg.cities4all: towards a shape grammar bases computational system tool for generating a sustainable and integrated urban design. In: Proceedings of the Conference on eCAADe2011 respecting Fragile Places, eCAADe (education and research in computer aided architectural design in Europe), pp 133–139Google Scholar
  37. PRL12.
    Santos F, Reis J, Lopes P, Paio A, Eloy S, Rato V (2012) A multi-agent expert system shell for shape grammars. In: Proceedings of the 17th international conference of the association for computer-aided architectural design research in Asia, CAADRIA 2012, pp 409–414Google Scholar
  38. RBB14.
    Ruiz-Montiel, M., Belmonte, M., Boned, J., Mandow, L., Millán, E., Badillo, A., Pérez-de-la-Cruz, J.: Layered shape grammars. Computer-Aided Des 56, 104–119 (2014)Google Scholar
  39. SaR13.
    Santos, F., Reis, J.: A language for automatic design generation. Proceedings of international conference on information systems and design of communication, ISDOC 2013, 64–68 (2013)Google Scholar
  40. SaE15.
    Santos F, Esmerado J (2015) A Different shape grammar approach for automatic design generation. In: Al-Diri B (ed) Proceedings of international journal of advances in computer science & its applications—IJCSIA, vol 5-1,IRED, pp 90–97Google Scholar
  41. StG72.
    Stiny, G., Gips, J.: Shape Grammars and the generative specification of painting and sculpture. In: Freiman, C.V. (ed) Information processing, vol. 71, pp. 1460–1465. North- Holland, Amsterdam (1972)Google Scholar
  42. Sti77.
    Stiny, G.: Ice-ray: a note on Chinese lattice designs. Environ Plan B 4, 89–98 (1977)CrossRefGoogle Scholar
  43. Sti80a.
    Stiny, G.: Introduction to shape and shape grammars. Environ Plan B 7(3), 343–351 (1980a)CrossRefGoogle Scholar
  44. Sti80b.
    Stiny, G.: Kindergarten grammars: designing with Froebel’s building gifts. Environ Plan B 7, 409–462 (1980b)CrossRefGoogle Scholar
  45. Sti82.
    Stiny, G.: Spatial relations and grammars. Environ Plan B 9, 113–114 (1982)CrossRefGoogle Scholar
  46. Sti90.
    Stiny, G.: What is a design? Environ Plan B 17, 97–103 (1990)CrossRefGoogle Scholar
  47. Sti92.
    Stiny, G.: Weights. Environ Plan B 19, 413–430 (1992)CrossRefGoogle Scholar
  48. Sti94.
    Stiny, G.: Shape rules: closure, continuity and emergence. Environ Plan B 21, S49–S78 (1994)CrossRefGoogle Scholar
  49. Sti01.
    Stiny G (2001) How to calculate with shapes. In: Formal engineering design synthesis. Cambridge University Press, New YorkGoogle Scholar
  50. StM78.
    Stiny, G., Mitchell, W.J.: The palladian grammar. Environ Plan B 5, 5–18 (1978)CrossRefGoogle Scholar
  51. StM80.
    Stiny, G., Mitchell, W.J.: The grammar of paradise: on the generation of Mughul gardens. Environ Plan B 7, 209–226 (1980)CrossRefGoogle Scholar
  52. Sto16.
    Stouffs R (2016) Description grammars?: A general notation. Environ Plan B Plan Des.
  53. Tap99.
    Tapia, M.: A visual implementation of a shape grammar system. Environ Plan B 26, 59–73 (1999)CrossRefGoogle Scholar

Copyright information

© British Computer Society 2018

Authors and Affiliations

  • Filipe Santos
    • 1
    • 2
  • Krystian Kwiecinski
    • 3
  • Ana de Almeida
    • 1
    • 2
    • 4
  • Sara Eloy
    • 1
    • 2
  • Bruno Taborda
    • 1
    • 4
  1. 1.Instituto Universitário de Lisboa (ISCTE-IUL)LisbonPortugal
  2. 2.Information Sciences, Technologies and Architecture Research Center (ISTAR-IUL)LisbonPortugal
  3. 3.Warsaw University of Technology (WAPW)WarsawPoland
  4. 4.Center for Informatics and Systems of the University of CoimbraCoimbraPortugal

Personalised recommendations