Skip to main content
Log in

On identification of self-similar characteristics using the Tensor Train decomposition method with application to channel turbulence flow

  • Original Article
  • Published:
Theoretical and Computational Fluid Dynamics Aims and scope Submit manuscript

Abstract

A study on the application of the Tensor Train decomposition method to 3D direct numerical simulation data of channel turbulence flow is presented. The approach is validated with respect to compression rate and storage requirement. In tests with synthetic data, it is found that grid-aligned self-similar patterns are well captured and also the application to non-grid-aligned self-similarity yields satisfying results. It is observed that the shape of the input Tensor significantly affects the compression rate. Applied to data of channel turbulent flow, the Tensor Train format allows for surprisingly high compression rates whilst ensuring low relative errors. However, the results indicate that representation of highly irregular flows at low ranks cannot be expected.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Adams, N.: A stochastic extension of the approximate deconvolution model. Phys. Fluids 23(055103), 1–9 (2011)

    Google Scholar 

  2. Adrian, R., Meinhart, C., Tomkins, C.: Vortex organization in the outer region of the turbulent boundary layer. J. Fluid Mech. 422, 1–54 (2000). https://doi.org/10.1017/S0022112000001580

    Article  MathSciNet  MATH  Google Scholar 

  3. Bakewell, H., Lumley, J.: Viscous sublayer and adjacent wall region in turbulent pipe flow. Phys. Fluids 10(9), 1880–1889 (1967). https://doi.org/10.1063/1.1762382

    Article  Google Scholar 

  4. Ballani, J., Grasedyck, L.: Tree adaptive approximation in the hierarchical tensor format. SIAM J. Sci. Comput. 36, A1415–A1431 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  5. Bürger, K., et al.: Vortices within vortices: hierarchical nature of vortex tubes in turbulence. arXiv:1210.3325 [physics.flu-dyn] (2013)

  6. Cattani, C.: Wavelet analysis of self similar functions. J. Dyn. Syst. Geom. Theor. 9(1), 75–97 (2011). https://doi.org/10.1080/1726037X.2011.10698594

    Article  MathSciNet  MATH  Google Scholar 

  7. Corino, E., Brodkey, R.: A visual investigation of the wall region in turbulent flow. J. Fluid Mech. 37, 1–30 (1969). https://doi.org/10.1017/S0022112069000395

    Article  Google Scholar 

  8. De Stefano, G., Nejadmalayeri, A., Vasilyev, O.: Wall-resolved wavelet-based adaptive large-eddy simulation of bluff-body flows with variable thresholding. J. Fluid Mech. 788, 303–336 (2016). https://doi.org/10.1017/jfm.2015.708

    Article  MathSciNet  MATH  Google Scholar 

  9. De Stefano, G., Vasilyev, O.: A fully adaptive wavelet-based approach to homogeneous turbulence simulation. J. Fluid Mech. 695, 149–172 (2012). https://doi.org/10.1017/jfm.2012.6

    Article  MathSciNet  MATH  Google Scholar 

  10. Dolgov, S., Khoromskij, B., Savostyanov, D.: Superfast Fourier transform using QTT approximation. J. Fourier Anal. Appl. 18, 915 (2012). https://doi.org/10.1007/s00041-012-9227-4

    Article  MathSciNet  MATH  Google Scholar 

  11. Farge, M., Rabreau, G.: Transformée en ondelettes pour détecter et analyser les structures cohérentes dans les écoulements turbulents bidimensionnels. C. R. Acad. Sci. Paris 307, 1479–1486 (1988)

    Google Scholar 

  12. Farge, M., Schneider, K., Kevlahan, N.: Non-Gaussianity and coherent vortex simulation for two-dimensional turbulence using an adaptive orthogonal wavelet basis. Phys. Fluids 11, 2187 (1999). https://doi.org/10.1063/1.870080

    Article  MathSciNet  MATH  Google Scholar 

  13. Frisch, U., Sulem, P.L., Nelkin, M.: A simple dynamical model of intermittent fully developed turbulence. J. Fluid Mech. 87(4), 719–736 (1978). https://doi.org/10.1017/S0022112078001846

    Article  MATH  Google Scholar 

  14. Fröhlich, J., Schneider, K.: Numerical simulation of decaying turbulence in an adaptive wavelet basis. Appl. Comput. Harmonic Anal. 3, 393–397 (1996). https://doi.org/10.1006/acha.1996.0033

    Article  MATH  Google Scholar 

  15. Fröhlich, J., Uhlmann, M.: Orthonormal polynomial wavelets on the interval and applications to the analysis of turbulent flow fields. SIAM J. Appl. Math. 63(5), 1789–1830 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  16. Germano, M., Piomelli, U., Moin, P., Cabot, W.H.: A dynamic subgrid scale eddy viscosity model. Phys. Fluids A 48, 273–337 (1991)

    MATH  Google Scholar 

  17. Goldstein, D., Vasilyev, O.: Stochastic coherent adaptive large eddy simulation method. Phys. Fluids 16, 2497 (2004). https://doi.org/10.1063/1.1736671

    Article  MathSciNet  MATH  Google Scholar 

  18. Grasedyck, L., Kressner, D., Tobler, C.: A literature survey of low-rank tensor approximation techniques. GAMM Mitteilungen 36, 53–78 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  19. Hackbusch, W.: Tensor Spaces and Numerical Tensor Calculus. Springer, Heidelberg (2012)

    Book  MATH  Google Scholar 

  20. Hackbusch, W., Kühn, S.: A new scheme for the tensor representation. J. Fourier Anal. Appl. 15, 706–722 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  21. Hackbusch, W., Schneider, R.: Tensor spaces and hierarchical tensor representations. In: Dahlke, S., Dahmen, W., Griebel, M., Hackbusch, W., Ritter, K., Schneider, R., Schwab, C., Yserentant, H. (eds.) Extraction of Quantifiable Information from Complex Systems. Lecture Notes in Computational Science and Engineering, vol. 102, pp. 237–361. Springer, New York (2014)

    Google Scholar 

  22. Hitchcock, F.: The expression of a tensor or a polyadic as a sum of products. J. Math. Phys. 6, 164–189 (1927)

    Article  MATH  Google Scholar 

  23. Horenko, I.: On clustering of non-stationary meteorological time series. Dyn. Atmos. Ocean 49, 164–187 (2010)

    Article  Google Scholar 

  24. Huber, B., Wolf, S.: Xerus—a general purpose tensor library. https://libxerus.org/ (2014–2015)

  25. Hughes, T.: Multiscale phenomena: Greens functions, the Dirichlet-to-Neumann formulation, subgrid scale models, bubbles and the origins of stabilized methods. Comput. Methods Appl. Mech. Eng. 127, 387–401 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  26. Hunt, J.C.R.: Vorticity and vortex dynamics in complex turbulent flows. In: Canadian Society for Mechanical Engineering, Transactions (ISSN 0315-8977), vol. 11, no. 1, 1987, pp. 21–35 (1987)

  27. Hunt, J.C.R., Wray, A.A., Moin, P.: Eddies, streams, and convergence zones in turbulent flows. In: Studying Turbulence Using Numerical Simulation Databases, vol. 2 (1988)

  28. Jimenez, J., Moin, P.: The minimal flow unit in near-wall turbulence. J. Fluid Mech. 225, 213–240 (1991)

    Article  MATH  Google Scholar 

  29. John, V., Kindl, A.: A variational multiscale method for turbulent flow simulation with adaptive large scale space. J. Comput. Phys. 229, 301–312 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  30. Kevlahan, N., Alam, J., Vasilyev, O.: Scaling of space-time modes with Reynolds number in two-dimensional turbulence. J. Fluid Mech. 570, 217–226 (2007). https://doi.org/10.1017/S0022112006003168

    Article  MathSciNet  MATH  Google Scholar 

  31. Khoromskij, B.: O(\(d \log {N}\))-quantics approximation of \({N}-d\) tensors in high-dimensional numerical modeling. Constr. Approx. 34, 257 (2011). https://doi.org/10.1007/s00365-011-9131-1

    Article  MathSciNet  MATH  Google Scholar 

  32. Khoromskij, B.: Tensor numerical methods for multidimensional PDEs: theoretical analysis and initial applications. ESAIM Proc. 48, 1–28 (2015). https://doi.org/10.1051/proc/201448001

    Article  MathSciNet  MATH  Google Scholar 

  33. Khoromskij, B., Miao, S.: Superfast wavelet transform using QTT approximation I: Haar wavelets. Comput. Methods Appl. Math. 14, 537–553 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  34. Kim, J., Moin, P., Moser, R.: Turbulence statistics in fully developed channel flow at low Reynolds number. J. Fluid Mech. 177, 133–166 (1987)

    Article  MATH  Google Scholar 

  35. Kline, S., Robinson, S.: Quasi-coherent structures in the turbulent boundary layer. i—status report on a community-wide summary of the data. In: Kline, S., Afgan, N. (eds.) Near-Wall Turbulence, pp. 200–217. Routledge (1990)

  36. Kolda, T., Bader, B.: Tensor decompositions and applications. SIAM Rev. 51, 455–500 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  37. Kolmogorov, A.: The local structure of turbulence in incompressible viscous fluid for very large Reynolds number. C. R. Acad. Sci. U.S.S.R. 30, 301 (1941)

  38. Kolmogorov, A.: A refinement of previous hypothesis concerning the local structure of turbulence in a viscous incompressible fluid at high Reynolds number. J. Fluid Mech. 62, 82 (1962)

    Article  MATH  Google Scholar 

  39. Kutz, J.: Deep learning in fluid dynamics. J. Fluid Mech. 814, 1–4 (2017)

    Article  MATH  Google Scholar 

  40. von Larcher, T., Beck, A., Klein, R., Horenko, I., Metzner, P., Waidmann, M., Igdalov, D., Gassner, G., Munz, C.D.: Towards a framework for the stochastic modelling of subgrid scale fluxes for large eddy simulation. Meteorol. Z. 24(3), 313–342 (2015). https://doi.org/10.1127/metz/2015/0581

    Article  MATH  Google Scholar 

  41. Lesieur, M.: Turbulence in Fluids: Stochastic and Numerical Modelling. Nijhoff, The Hague (1987)

    Book  MATH  Google Scholar 

  42. Ling, J., Kurzawski, A., Templeton, J.: Reynolds averaged turbulence modelling using deep neural networks with embedded invariance. J. Fluid Mech. 807, 155–166 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  43. Liu, S., Meneveau, C., Katz, J.: On the properties of similarity subgrid-scale models as deduced from measurements in a turbulent jet. J. Fluid Mech. 275, 83–91 (1994)

    Article  Google Scholar 

  44. Mallat, S.: A Wavelet Tour of Signal Processing, 3rd edn. Academic Press, Boston (2009)

    MATH  Google Scholar 

  45. Metzner, P., Putzig, L., Horenko, I.: Analysis of persistent non-stationary time series and applications. CAMCoS 7, 175–229 (2012)

    Article  MATH  Google Scholar 

  46. Moser, R., Kim, J., Mansour, N.: Direct numerical simulation of turbulent channel flow up to R\(\text{ e }_\tau \)=590. Phys. Fluids 11(4), 943–945 (1999)

    Article  MATH  Google Scholar 

  47. Nejadmalayeri, A., Vezolainen, A., DeStefano, G., Vasilyev, O.: Fully adaptive turbulence simulations based on lagrangian spatio-temporally varying wavelet thresholding. J. Fluid Mech. 749, 794–817 (2014). https://doi.org/10.1017/jfm.2014.241

    Article  MathSciNet  Google Scholar 

  48. Nejadmalayeri, A., Vezolainen, A., Vasilyev, O.: Reynolds number scaling of coherent vortex simulation and stochastic coherent adaptive large eddy simulation. Phys. Fluids 25(11), 110–823 (2013). https://doi.org/10.1063/1.4825260

    Article  Google Scholar 

  49. Oboukhov, A.: Some specific features of atmospheric turbulence. J. Fluid Mech. 62, 77 (1962)

    Article  MathSciNet  MATH  Google Scholar 

  50. Oseledets, I.: Approximation of \(2^{d}\times 2^{d}\) matrices using tensor decomposition. SIAM J. Matrix Anal. Appl. 31, 2130–2145 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  51. Oseledets, I., Tyrtyshnikov, E.: Breaking the curse of dimensionality, or how to use SVD in many dimensions. SIAM J. Sci. Comput. 31, 3744–3759 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  52. Oseledets, I., Tyrtyshnikov, E.: TT-cross approximation for multidimensional arrays. Linear Algebra Appl. 432, 70–88 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  53. Oseledets, I., Tyrtyshnikov, E.: Algebraic wavelet transform via quantics tensor train decomposition. SIAM J. Sci. Comput. 33, 1315–1328 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  54. Paladin, G., Vulpiani, A.: Degrees of freedom of turbulence. Phys. Rev. A 35, 1971–1973 (1987). https://doi.org/10.1103/PhysRevA.35.1971

    Article  Google Scholar 

  55. Pope, S.: Turbulent Flows. Cambridge University Press, Cambridge (2000)

    Book  MATH  Google Scholar 

  56. Richardson, L.: Weather Prediction by Numerical Process. Cambridge University Press, Cambridge (1922)

    MATH  Google Scholar 

  57. Robinson, S.: Coherent motions in the turbulent boundary layer. Ann. Rev. Fluid Mech. 23, 601–639 (1991)

    Article  Google Scholar 

  58. Sagaut, P.: Large Eddy Simulation for Incompressible Flows, 3rd edn. Springer, Berlin (2006)

    MATH  Google Scholar 

  59. Scotti, A., Meneveau, C.: A fractal model for large eddy simulation of turbulent flows. Physica D 127, 198–232 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  60. Smagorinsky, J.: General circulation experiments with the primitive equations. Mon. Wea. Rev. 93, 99–164 (1963)

    Article  Google Scholar 

  61. Ting, L., Klein, R., Knio, O.M.: Vortex Dominated Flows: Analysis and Computation for Multiple Scales. Series in Applied Mathematical Sciences, vol. 116. Springer, Berlin (2007)

    MATH  Google Scholar 

  62. Tucker, L.: Some mathematical notes on three-mode factor analysis. Psychometrika 31, 279–311 (1966)

    Article  MathSciNet  Google Scholar 

  63. Uhlmann, M.: Generation of a temporally well-resolved sequence of snapshots of the flow-field in turbulent plane channel flow (2000). http://www-turbul.ifh.uni-karlsruhe.de/uhlmann/reports/produce.pdf. Accessed July 2017

  64. Uhlmann, M.: Generation of initial fields for channel flow investigation. Intermediate Report (2000). http://www-turbul.ifh.uni-karlsruhe.de/uhlmann/home/report.html. Accessed July 2017

  65. Uhlmann, M.: The need for de-aliasing in a Chebyshev pseudo-spectral method. Technical note no. 60 (2000). http://www-turbul.ifh.uni-karlsruhe.de/uhlmann/reports/dealias.pdf. Accessed July 2017

  66. Vergassola, M., Frisch, U.: Wavelet transforms of self-similar processes. Phys. D Nonlinear Phenom. 54(1), 58–64 (1991). https://doi.org/10.1016/0167-2789(91)90107-K. http://www.sciencedirect.com/science/article/pii/016727899190107K

  67. Wallace, J., Eckelmann, H., Brodkey, R.: The wall region in turbulent shear flow. J. Fluid Mech. 54(1), 39–48 (1972). https://doi.org/10.1017/S0022112072000515

    Article  Google Scholar 

  68. Wang, J., Wu, J., Ling, J., Iaccarino, G., Xiao, H.: A comprehensive physics-informed machine learning framework for predictive turbulence modeling. arXiv:1701.07102v1 [physics.flu-dyn] (2017)

  69. Willmarth, W., Lu, S.: Structure of the Reynolds stress near the wall. J. Fluid Mech. 55(1), 65–92 (1972). https://doi.org/10.1017/S002211207200165X

    Article  Google Scholar 

  70. Wu, J., Wang, J., Xiao, H., Ling, J.: A priori assessment of prediction confidence for data-driven turbulence modeling. arXiv:1607.04563v2 [physics.comp-ph] (2017)

  71. Zhang, Z., Duraisamy, K.: Machine learning methods for data-driven turbulence modeling. AIAA Aviation (2015). https://doi.org/10.2514/6.2015-2460

Download references

Acknowledgements

This research has been funded by Deutsche Forschungsgemeinschaft (DFG) through grant CRC 1114 ‘Scaling Cascades in Complex Systems’, Project B04 ‘Multiscale Tensor decomposition methods for partial differential equations’. The authors thank Prof. Illia Horenko (CRC 1114 Mercator Fellow) as well as Prof. Reinhold Schneider and Prof. Harry Yserentant for rich discussions and for steady support. Thomas von Larcher thanks Sebastian Wolf and Benjamin Huber (both at TU Berlin, Germany) very much for developing the Tensor library Xerus which has been used for data analysis, as well as for their round-the-clock support in the project. The data were generated and processed using resources of the North-German Supercomputing Alliance (HLRN), Germany, and of the Department of Mathematics and Computer Science, Freie Universität Berlin, Germany. The authors thank Alexander Kuhn and Christian Hege (both at Zuse Institute Berlin, Germany) for steady support in data processing and data visualization.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas von Larcher.

Additional information

Communicated by Oleg V. Vasilyev.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Thomas von Larcher: formerly Freie Universität Berlin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

von Larcher, T., Klein, R. On identification of self-similar characteristics using the Tensor Train decomposition method with application to channel turbulence flow. Theor. Comput. Fluid Dyn. 33, 141–159 (2019). https://doi.org/10.1007/s00162-019-00485-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00162-019-00485-z

Keywords

Navigation