Skip to main content
Log in

The transient development of the flow in an impulsively rotated annular container

  • Original Article
  • Published:
Theoretical and Computational Fluid Dynamics Aims and scope Submit manuscript

Abstract

When a fluid-filled container is spun up from rest to a constant angular velocity the fluid responds in such a way that the fluid–container system is ultimately in a state of rigid-body rotation. The fluid can then be said to have traversed a trajectory in phase space from a simple stable equilibrium state of no motion to another stable equilibrium representing full rigid-body rotation. This simple statement belies the fact that during this process the fluid can undergo a series of transitions, from a laminar through a transient turbulent state, before attaining the stable motion that is rigid-body rotation. Using a combination of analytical and computational methods, we focus on the dynamics resulting from an impulsive change in the rotation rate of a fluid-filled annulus, specifically, the impulsive spin-up of a stationary annulus, or the impulsive spin-down of an annulus already in a state of rigid-body rotation. We explore the initial development of the impulsively generated axisymmetric boundary layer, its subsequent instability, and the larger-scale transient features within this class of flows, allowing us to look at the effect these features have on the time it takes for the system to spin up to a steady state, or spin down to rest.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Benton, E., Clark, A.: Spin-up. Ann. Rev. Fluid Mech. 6, 257–280 (1974)

    Article  Google Scholar 

  2. Blackburn, H.M., Sherwin, S.J.: Formulation of a Galerkin spectral element-Fourier method for three-dimensional incompressible flows in cylindrical geometries. J. Comput. Phys. 197, 759–778 (2004)

    Article  Google Scholar 

  3. Calabretto, S.A.W.: Instability and transition in unsteady rotating flows. PhD thesis, The University of Auckland (2015)

  4. Calabretto, S.A.W., Mattner, T.W., Denier, J.P.: The effect of seam imperfections in the spin-up of a fluid-filled torus. J. Fluid Mech. 767, 240–253 (2015)

    Article  Google Scholar 

  5. del Pino, C., Hewitt, R.E., Clarke, R.J., Mullin, T., Denier, J.P. Unsteady fronts in the spin-down of a fluid-filled torus. Phys Fluids 20, 124104 (2008)

  6. Do, Y., Lopez, J., Marques, F.: Optimal harmonic response in a confined Bödewadt boundary layer flow. Phys. Rev. E 82, 036301 (2010)

    Article  Google Scholar 

  7. Duck, P.W., Foster, M.R.: Spin-up of homogeneous and stratified fluids. Ann. Rev. Fluid Mech. 33, 231–263 (2001)

    Article  Google Scholar 

  8. Ekman, V.W.: On the influence of the earth’s rotation on ocean-currents. Arkiv för matematik, astronomi och fysik 2(11), 53 (1905)

    MATH  Google Scholar 

  9. Görtler, H.: Über eine dreidimensionale Instabilität laminarer Grenzschichten an konkaven Wänden. Nachrichten von der Gesellschaft der Wissenschaften zu Göttingen, Mathematisch-Physikalische Klasse 1:1–26 (1940) (translated as ‘On the three-dimensional instability of laminar boundary layers on concave walls’, NACA-TM1375)

  10. Greenspan, H.P.: The Theory of Rotating Fluids. Cambridge University Press, Cambridge (1968)

    MATH  Google Scholar 

  11. Greenspan, H.P., Howard, L.N.: On a time-dependent motion of a rotating fluid. J. Fluid Mech. 17, 385–404 (1963)

    Article  MathSciNet  Google Scholar 

  12. Hall, P.: Taylor–Görtler vortices in fully developed or boundary-layer flows: linear theory. J. Fluid Mech. 124, 475–494 (1982)

    Article  Google Scholar 

  13. Hall, P.: Centrifugal instabilities of circumferential flows in finite cylinders: the wide gap problem. Proc. R. Soc. Lond. Ser. A 384, 359–379 (1982)

    Article  MathSciNet  Google Scholar 

  14. Hall, P.: The linear development of Görtler vortices in growing boundary layers. J. Fluid Mech. 130, 41–58 (1983)

    Article  MathSciNet  Google Scholar 

  15. Hall, P.: The Görtler vortex instability mechanism in three-dimensional boundary layers. Proc. R. Soc. Lond. Ser. A 399, 135–152 (1985)

    Article  Google Scholar 

  16. Hall, P., Seddougui, S.: On the onset of three-dimensionality and time-dependence in Görtler vortices. J. Fluid Mech. 204, 405–420 (1989)

    Article  MathSciNet  Google Scholar 

  17. Hewitt, R.E., Hazel, A.L., Clarke, R.J., Denier, J.P.: Unsteady flow in a rotating torus after a sudden change in rotation rate. J. Fluid Mech. 688, 88–119 (2011)

    Article  MathSciNet  Google Scholar 

  18. Honji, H.: Streaked flow around an oscillating circular cylinder. J. Fluid Mech. 107, 509–520 (1981)

    Article  Google Scholar 

  19. Jewell, N., Denier, J.: The decay of the flow in the end region of a suddenly blocked pipe. J. Fluid Mech. 730, 533–558 (2013)

    Article  MathSciNet  Google Scholar 

  20. Lopez, J., Marques, F., Rubio, A., Avila, M.: Crossflow instability of finite Bödewadt flows: transients and spiral waves. Phys. Fluids 21(114), 107 (2009)

    MATH  Google Scholar 

  21. Lopez, J.M., Weidman, P.D.: Stability of stationary endwall boundary layers during spin-down. J. Fluid Mech. 326, 373–398 (1996)

    Article  Google Scholar 

  22. MacKerrell, S., Bassom, A., Blennerhassett, P.: Görtler vortices in the Rayleigh layer on an impulsively started cylinder. Phys. Fluids 14, 2948 (2002)

    Article  MathSciNet  Google Scholar 

  23. Madden, F.N., Mullin, T.: The spin-up from rest of a fluid-filled torus. J. Fluid Mech. 265, 217–244 (1994)

    Article  MathSciNet  Google Scholar 

  24. Otto, S.R.: Stability of the flow around a cylinder: the spin-up problem. IMA J. Appl. Math. 51, 13–26 (1993)

    Article  MathSciNet  Google Scholar 

  25. Rayleigh, L.: On the motion of solid bodies through viscous liquid. Philos. Mag. 21, 697–711 (1911)

    Article  Google Scholar 

  26. Rayleigh, L.: On the dynamics of revolving fluids. Proc. R. Soc. Lond. Ser. A 93, 148–154 (1917)

    Article  Google Scholar 

  27. Savaş, Ö.: Circular waves on a stationary disk in rotating flow. Phys. Fluids 26, 3445–3448 (1983)

    Article  Google Scholar 

  28. Savaş, Ö.: On flow visualization using reflective flakes. J. Fluid Mech. 152, 235–248 (1985)

    Article  Google Scholar 

  29. Savaş, Ö.: Stability of Bödewadt flow. J. Fluid Mech. 183, 77–94 (1987)

    Article  Google Scholar 

  30. Smirnov, S.A., Boyer, D.L., Baines, P.G.: Nonaxisymmetric effects of stratified spin-up in an axisymmetric annular channel. Phys. Fluids 12, 086601 (2005)

    Article  Google Scholar 

  31. Stewartson, K.: On almost rigid rotations. J. Fluid Mech. 3, 17–26 (1957)

    Article  MathSciNet  Google Scholar 

  32. Stokes, G.G.: On the Effect of the Internal Friction of Fluids on the Motion of Pendulums, vol. 9, p. 8. Trans Camb Philos Soc, Cambridge (1856)

    Google Scholar 

  33. von Kármán, T.: Über laminare und turbulente Reibung. J. Appl. Math. Mech. (ZAMM) 1:233–252 (1921) (translated as ‘On laminar and turbulent friction’, NACA-TM1092)

    Article  Google Scholar 

  34. Wedemeyer, E.H.: The unsteady flow within a spinning cylinder. J. Fluid Mech. 20, 383–399 (1964)

    Article  MathSciNet  Google Scholar 

  35. Weidman, P.D.: On the spin-up and spin-down of a rotating fluid Part 1 Extending the Wedemeyer model. J. Fluid Mech. 77, 685–708 (1976)

    Article  Google Scholar 

  36. Weidman, P.D.: On the spin-up and spin-down of a rotating fluid. part 2. measurements and stability. J. Fluid Mech. 77, 709–735 (1976)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sophie A. W. Calabretto.

Additional information

Communicated by Vassilios Theofilis.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Calabretto, S.A.W., Denier, J.P. & Mattner, T.W. The transient development of the flow in an impulsively rotated annular container. Theor. Comput. Fluid Dyn. 32, 821–845 (2018). https://doi.org/10.1007/s00162-018-0479-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00162-018-0479-8

Keywords

Navigation