Effects of confinement, geometry, inlet velocity profile, and Reynolds number on the asymmetry of opposed-jet flows

  • Abtin Ansari
  • Kevin K. Chen
  • Robert R. Burrell
  • Fokion N. Egolfopoulos
Original Article


The opposed-jet counterflow configuration is widely used to measure fundamental flame properties that are essential targets for validating chemical kinetic models. The main and key assumption of the counterflow configuration in laminar flame experiments is that the flow field is steady and quasi-one-dimensional. In this study, experiments and numerical simulations were carried out to investigate the behavior and controlling parameters of counterflowing isothermal air jets for various nozzle designs, Reynolds numbers, and surrounding geometries. The flow field in the jets’ impingement region was analyzed in search of instabilities, asymmetries, and two-dimensional effects that can introduce errors when the data are compared with results of quasi-one-dimensional simulations. The modeling involved transient axisymmetric numerical simulations along with bifurcation analysis, which revealed that when the flow field is confined between walls, local bifurcation occurs, which in turn results in asymmetry, deviation from the one-dimensional assumption, and sensitivity of the flow field structure to boundary conditions and surrounding geometry. Particle image velocimetry was utilized and results revealed that for jets of equal momenta at low Reynolds numbers of the order of 300, the flow field is asymmetric with respect to the middle plane between the nozzles even in the absence of confining walls. The asymmetry was traced to the asymmetric nozzle exit velocity profiles caused by unavoidable imperfections in the nozzle assembly. The asymmetry was not detectable at high Reynolds numbers of the order of 1000 due to the reduced sensitivity of the flow field to boundary conditions. The cases investigated computationally covered a wide range of Reynolds numbers to identify designs that are minimally affected by errors in the experimental procedures or manufacturing imperfections, and the simulations results were used to identify conditions that best conform to the assumptions of quasi-one-dimensional modeling.


Counterflow configuration Numerical simulations Quasi- one-dimensional modeling Bifurcation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



The Air Force Office of Scientific Research (Grant No. FA9550-15-1-0409) supported this work under the technical supervision of Dr. Chiping Li. The numerical simulations were carried out using the Extreme Science and Engineering Discovery Environment (XSEDE), which is supported by National Science Foundation Grant Number TG-CTS140012. The authors would like to gratefully acknowledge the assistance of Dr. Vyaas Gururajan for his feedback and technical support with the numerical simulations.


  1. 1.
    Carpioa, J., Liñán, A., Sánchez, A.L., Williams, F.A.: Aerodynamics of axisymmetric counterflowing jets. Combust. Flame 177, 137–143 (2017)CrossRefGoogle Scholar
  2. 2.
    Tamir, A.: Impinging-Stream Reactors: Fundamentals and Applications. Elsevier, Beer-Sheva (2014)Google Scholar
  3. 3.
    Park, O., Veloo, P.S., Burbano, H., Egolfopoulos, F.N.: Studies of premixed and non-premixed hydrogen flames. Combust. Flame 162(4), 1078–1094 (2015)CrossRefGoogle Scholar
  4. 4.
    Won, S.H., Jiang, B., Diévart, P., Sohn, C.H., Ju, Y.: Self-sustaining n-heptane cool diffusion flames activated by ozone. Proc. Combust. Inst. 35(1), 881–888 (2015)CrossRefGoogle Scholar
  5. 5.
    Burrell, R.R.: Studies of methane counterflow flames at low pressures. Doctor of Philosophy Thesis, Mechanical Engineering, University of Southern California, Los Angeles, California (2017)Google Scholar
  6. 6.
    Carbone, F., Gomez, A.: The structure of toluene-doped counterflow gaseous diffusion flames. Combust. Flame 159(10), 3040–3055 (2012)CrossRefGoogle Scholar
  7. 7.
    Kee, R.J., Miller, J.A., Evans, G.H., Dixon-Lewis, G.: A computational model of the structure and extinction of strained, opposed flow, premixed methane-air flames. Proc. Combust. Inst. 22(1), 1479–1494 (1988)CrossRefGoogle Scholar
  8. 8.
    Chelliah, H.K., Law, C.K., Ueda, T., Smooke, M.D., Williams, F.A.: An experimental and theoretical investigation of the dilution, pressure and flow-field effects on the extinction condition of methane-air-nitrogen diffusion flames. Proc. Combust. Inst. 23(1), 503–511 (1990)CrossRefGoogle Scholar
  9. 9.
    Kim, Y.M., Kim, H.-J.: Multidimensional effects on structure and extinction process of counterflow nonpremixed hydrogen-air flames. Combust. Sci. Technol. 137(1–6), 51–80 (1998)CrossRefGoogle Scholar
  10. 10.
    Frouzakis, C.E., Lee, J., Tomboulides, A.G., Boulouchos, K.: Two-dimensional direct numerical simulation of opposed-jet hydrogen-air diffusion flame. Proc. Combust. Inst. 27(1), 571–577 (1998)CrossRefGoogle Scholar
  11. 11.
    Mittal, V., Pitsch, H., Egolfopoulos, F.N.: Assessment of counterflow to measure laminar burning velocities using direct numerical simulation. Combust. Theory Model. 16(3), 419–433 (2012)CrossRefzbMATHGoogle Scholar
  12. 12.
    Sarnacki, B.G., Esposito, G., Krauss, R.H., Chelliah, H.K.: Extinction limits and associated uncertainties of nonpremixed counterflow flames of methane, ethylene, propylene and n-butane in air. Combust. Flame 159(3), 1026–1043 (2012)CrossRefGoogle Scholar
  13. 13.
    Niemann, U., Seshadri, K., Williams, F.A.: Accuracies of laminar counterflow flame experiments. Combust. Flame 162(4), 1540–1549 (2015)CrossRefGoogle Scholar
  14. 14.
    Johnson, R.F., VanDine, A.C., Esposito, G.L., Chelliah, H.K.: On the axisymmetric counterflow flame simulations: is there an optimal nozzle diameter and separation distance to apply quasi one-dimensional theory? Combust. Sci. Technol. 187(1–2), 37–59 (2015)CrossRefGoogle Scholar
  15. 15.
    Burrell, R.R., Zhao, R., Lee, D.J., Burbano, H., Egolfopoulos, F.N.: Two-dimensional effects in counterflow methane flames. Proc. Combust. Inst. 36(1), 1387–1394 (2016)CrossRefGoogle Scholar
  16. 16.
    Ansari, A., Egolfopoulos, F.N.: Flame ignition in the counterflow configuration: reassessing the experimental assumptions. Combust. Flame 174, 37–49 (2016)CrossRefGoogle Scholar
  17. 17.
    Fox, J.L., Morgan, G.W.: On the stability of some flows of an ideal fluid with free surfaces. Q. Appl. Math. 11(4), 439–465 (1952)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Rolon, J.C., Veynante, D., Martin, J.P.: Counter jet stagnation flows. Exp. Fluids 11(5), 313–324 (1991)CrossRefGoogle Scholar
  19. 19.
    Pawlowski, R.P., Salinger, A.G., Shadid, J.N., Mountziaris, T.J.: Bifurcation and stability analysis of laminar isothermal counterflowing jets. J. Fluid Mech. 551, 117–139 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Ciani, A., Kreutner, W., Frouzakis, C.E., Lust, K., Coppola, G., Boulouchos, K.: An experimental and numerical study of the structure and stability of laminar opposed-jet flows. Comput. Fluids 39(1), 114–124 (2010)CrossRefzbMATHGoogle Scholar
  21. 21.
    Li, W.F., Sun, Z., Liu, H.F., Wang, F.C., Yu, Z.: Experimental and numerical study on stagnation point offset of turbulent opposed jets. Chem. Eng. J. 138(1), 283–294 (2008)CrossRefGoogle Scholar
  22. 22.
    Li, W.F., Yao, T.L., Wang, F.C.: Study on factors influencing stagnation point offset of turbulent opposed jets. AIChE J. 56(1), 2513–2522 (2010)CrossRefGoogle Scholar
  23. 23.
    Li, W.F., Yao, T.L., Liu, H.F., Wang, F.C.: Experimental investigation of flow regimes of axisymmetric and planar opposed jets. AIChE J. 57(6), 1434–1445 (2011)CrossRefGoogle Scholar
  24. 24.
    Fotache, C.G., Kreutz, T.G., Zhu, D.L., Law, C.K.: An experimental study of ignition in nonpremixed counterflowing hydrogen versus heated air. Combust. Sci. Technol. 109(1–6), 373–393 (1995)CrossRefGoogle Scholar
  25. 25.
    Seiser, R., Seshadri, K., Piskernik, E., Linán, A.: Ignition in the viscous layer between counterflowing streams: asymptotic theory with comparison to experiments. Combust. Flame 122(3), 339–349 (2000)CrossRefGoogle Scholar
  26. 26.
    Hammond, D.A., Redekopp, L.G.: Local and global instability properties of separation bubbles. Eur. J. Mech. B Fluids 17(2), 145–164 (1998)MathSciNetCrossRefzbMATHGoogle Scholar
  27. 27.
    Cherubini, S., Robinet, J., De Palma, P.: The effects of non-normality and nonlinearity of the Navier–Stokes operator on the dynamics of a large laminar separation bubble. Phys. Fluids 22(1), 014102 (2010)CrossRefzbMATHGoogle Scholar
  28. 28.
    Feran, R.M., Mullin, T., Cliffe, K.A.: Nonlinear flow phenomena in a symmetric sudden expansion. J. Fluid Mech. 221, 596–608 (1990)Google Scholar
  29. 29.
    Amantini, G., Frank, J.H., Gomez, A.: Experiments on standing and traveling edge flames around flame holes. Proc. Combust. Inst. 30(1), 313–321 (2005)CrossRefGoogle Scholar
  30. 30.
    Amantini, G., Frank, J.H., Smooke, M.D., Gomez, A.: Computational and experimental study of steady axisymmetric non-premixed methane counterflow flames. Combust. Theory Model. 11(1), 47–72 (2007)CrossRefzbMATHGoogle Scholar
  31. 31.
    Strogatz, S.T.: Nonlinear Dynamics and Chaos: With Applications to Physics, Biology, Chemistry, and Engineering. Westview Press, Philadelphia (2014)zbMATHGoogle Scholar
  32. 32.
    Kostiuk, L.W., Bray, K.N.C., Cheng, R.K.: Experimental study of premixed turbulent combustion in opposed streams. Part I—Nonreacting flow field. Combust. Flame 92(4), 377–395 (1993)CrossRefGoogle Scholar
  33. 33.
    Pellett, G., Isaac, K., Humphreys, W., Garttrell, L., Roberts, W., Dancey, C., Northam, G.: Velocity and thermal structure, and strain-induced extinction of 14 to 100% hydrogen-air counterflow diffusion flames. Combust. Flame 112(4), 575–592 (1998)CrossRefGoogle Scholar
  34. 34.
    Stan, G., Johnson, D.A.: Experimental and numerical analysis of turbulent opposed impinging jets. AIAA J. 39(10), 1901–1908 (2001)CrossRefGoogle Scholar
  35. 35.
    Kostiuk, L.W., Bray, K.N.C., Cheng, R.K.: Experimental study of premixed turbulent combustion in opposed streams. Part II—reacting flow field and extinction. Combust. Flame 92(4), 396–409 (1993)CrossRefGoogle Scholar
  36. 36.
    Ogawa, N., Maki, H.: Studies on opposed turbulent jets: influences of a body on the axis of opposed turbulent jets. Bull. JSME 29(255), 2872–2877 (1986)CrossRefGoogle Scholar
  37. 37.
    Ogawa, N., Maki, H., Hijikata, K.: Studies on opposed turbulent jets: impact position and turbulent component in jet center. JSME Int. J. 35(2), 205–211 (1992)Google Scholar
  38. 38.
    Scribano, G., Bisetti, F.: Reynolds number and geometry effects in laminar axisymmetric isothermal counterflows. Phys. Fluids 28(12), 123605 (2016)CrossRefGoogle Scholar
  39. 39.
    Lindstedt, R.P., Luff, D.S., Whitelaw, J.H.: Velocity and strain-rate characteristics of opposed isothermal flows. Flow Turbul. Combust. 74(2), 169–194 (2005)CrossRefGoogle Scholar
  40. 40.
    Dong, Y., Vagelopoulos, C.M., Spedding, G.R., Egolfopoulos, F.N.: Measurement of laminar flame speeds through digital particle image velocimetry: mixtures of methane and ethane with hydrogen, oxygen, nitrogen, and helium. Proc. Combust. Inst. 29(2), 1419–1426 (2002)CrossRefGoogle Scholar
  41. 41.
    Hughes, I., Hase, T.: Measurements and Their Uncertainties: A Practical Guide to Modern Error Analysis. Oxford University Press, New York (2010)zbMATHGoogle Scholar
  42. 42.
    Lutz, A.E., Kee, R.J., Grcar, J.F., Rupley, F.M.: OPPDIF: A FORTRAN Program for Computing Opposed-Flow Diffusion Flames. Sandia National Laboratories, Livermore (1997)CrossRefGoogle Scholar
  43. 43.
    Weller, H.H., Tabor, G., Jasak, H., Fureby, C.: A tensorial approach to computational continuum mechanics using object-oriented techniques. Comput. Phys. 12(6), 620–631 (1998)CrossRefGoogle Scholar
  44. 44.
    Chen, K.K., Rowley, C.W., Stone, H.A.: Vortex dynamics in a pipe T-junction: recirculation and sensitivity. Phys. Fluids 27(3), 034107 (2015)CrossRefGoogle Scholar
  45. 45.
    Chen, K.K., Rowley, C.W., Stone, H.A.: Vortex breakdown, linear global instability and sensitivity of pipe bifurcation flows. J. Fluid Mech. 815, 257–294 (2017)MathSciNetCrossRefzbMATHGoogle Scholar
  46. 46.
    Issa, R.I.: Solution of the implicitly discretized fluid flow equations by operator-splitting. J. Comput. Phys. 62(1), 40–65 (1986)MathSciNetCrossRefzbMATHGoogle Scholar
  47. 47.
    Courant, R., Friedrichs, K., Lewy, H.: On the partial difference equations of mathematical physics. IBM J. 11(2), 215–234 (1967)MathSciNetCrossRefzbMATHGoogle Scholar
  48. 48.
    Armijo, L.: Minimization of functions having Lipschitz continuous first partial derivatives. Pac. J. Math. 16(1), 1–3 (1966)MathSciNetCrossRefzbMATHGoogle Scholar
  49. 49.
    Kelley, C.T.: Iterative Methods for Linear and Nonlinear Equations. Society for Industrial and Applied Mathematics, Philadelphia (1995)CrossRefzbMATHGoogle Scholar
  50. 50.
    Saad, Y., Schultz, M.H.: GMRES: a generalized minimal residual algorithm for solving nonsymmetric linear systems. SIAM J. Sci. Stat. Comput. 7(3), 856–869 (1986)MathSciNetCrossRefzbMATHGoogle Scholar
  51. 51.
    Tuckerman, L., Barkley, D.: Bifurcation analysis for time steppers. In: Doedel, E., Tuckerman, L.S. (eds.) Numerical Methods for Bifurcation Problems and Large-Scale Dynamical Systems, pp. 453–466. Springer, New York (2000)CrossRefGoogle Scholar
  52. 52.
    Trefethen, L.N., Bau III, D.: Numerical Linear Algebra. SIAM, Philadelphia (1997)CrossRefzbMATHGoogle Scholar
  53. 53.
    Korusoy, E., Whitelaw, J.H.: Inviscid, laminar and turbulent opposed flows. Int. J. Numer. Methods Fluids 46(11), 1069–1098 (2004)CrossRefzbMATHGoogle Scholar
  54. 54.
    Gresho, P.M., Sani, R.L.: On pressure boundary conditions for the incompressible Navier–Stokes equations. Int. J. Numer. Methods Fluids 7(10), 1111–1145 (1987)CrossRefzbMATHGoogle Scholar
  55. 55.
    Godrèche, C., Manneville, P., Castaing, B.: Hydrodynamics and Nonlinear Instabilities. Cambridge University Press, Cambridge (2005)Google Scholar
  56. 56.
    Oh, C.B., Hamins, A., Bundy, M., Park, J.: The two-dimensional structure of low strain rate counterflow nonpremixed-methane flames in normal and microgravity. Combust. Theory Model. 12(2), 283–302 (2008)CrossRefzbMATHGoogle Scholar
  57. 57.
    Fletcher, C.A.J.: Computational Techniques for Fluid Dynamics 1: Fundamental and General Techniques. Springer, Berlin (1988)CrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Aerospace and Mechanical EngineeringUniversity of Southern CaliforniaLos AngelesUSA
  2. 2.Center for Communications Research - La JollaSan DiegoUSA

Personalised recommendations