Shallow water modeling of rolling pad instability in liquid metal batteries

Original Article

Abstract

Magnetohydrodynamically induced interface instability in liquid metal batteries is analyzed. The batteries are represented by a simplified system in the form of a rectangular cell, in which strong vertical electric current flows through three horizontal layers: the layer of a heavy metal at the bottom, the layer of a light metal at the top, and the layer of electrolyte in the middle. A new two-dimensional nonlinear model based on the conservative shallow water approximation is derived and utilized in a numerical study. It is found that in the case of small density difference between the electrolyte and one of the metals, the instability closely resembles the rolling pad instability observed earlier in the aluminum reduction cells. When the two electrolyte-metal density differences are comparable, the dynamics of unstable systems is more complex and characterized by interaction between two nearly synchronized or nearly anti-synchronized interfacial waves.

Keywords

Liquid metal battery Magnetohydrodynamics Interfacial instability Shallow water model 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

The author is thankful to Norbert Weber, Tom Weier, Valdis Bojarevics, and Gerrit Horstmann for interesting and stimulating discussions. Financial support was provided by the US NSF (Grant CBET 1435269).

References

  1. 1.
    Adams, J.C.: Multigrid software for elliptic partial differential equations: Mudpack. NCAR Technical Note-357+STR (1991)Google Scholar
  2. 2.
    Bojarevics, V., Romerio, M.V.: Long waves instability of liquid metal-electrolyte interface in aluminium electrolysis cells: a generalization of Sele’s criterion. Eur. J. Mech. B Fluids 13(1), 33–56 (1994)MathSciNetMATHGoogle Scholar
  3. 3.
    Bojarevics, V., Tucs, A.: MHD of large scale liquid metal batteries. In: Light Metals 2017, pp. 687–692. Springer (2017)Google Scholar
  4. 4.
    Bradwell, D.J., Kim, H., Sirk, A.H.C., Sadoway, D.R.: Magnesium-antimony liquid metal battery for stationary energy storage. J. Am. Chem. Soc. 134(4), 1895–1897 (2012)CrossRefGoogle Scholar
  5. 5.
    Davidson, P.A.: Introduction to Magnetohydrodynamics. Cambridge University Press, Cambridge (2016)CrossRefMATHGoogle Scholar
  6. 6.
    Davidson, P.A., Lindsay, R.I.: Stability of interfacial waves in aluminium reduction cells. J. Fluid Mech. 362, 273–295 (1998)CrossRefMATHGoogle Scholar
  7. 7.
    Herreman, W., Nore, C., Cappanera, L., Guermond, J.L.: Tayler instability in liquid metal columns and liquid metal batteries. J. Fluid Mech. 771, 79–114 (2015)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Horstmann, G.M., Weber, N., T., W.: Coupling and stability of interfacial waves in liquid metal batteries. arXiv preprint arXiv:1708.02159 (2017)
  9. 9.
    Karniadakis, G., Israeli, M., Orszag, S.: High-order splitting methods for the incompressible Navier–Stokes equations. J. Comp. Phys. 97(2), 414–443 (1991)MathSciNetCrossRefMATHGoogle Scholar
  10. 10.
    Kelley, D.H., Sadoway, D.R.: Mixing in a liquid metal electrode. Phys. Fluids 26(5), 057102 (2014)CrossRefGoogle Scholar
  11. 11.
    Kelley, D.H., Weier, T.: Fluid mechanics of liquid metal batteries. Appl. Mech. Rev. 70(2), 020801 (2018)CrossRefGoogle Scholar
  12. 12.
    Kim, H., Boysen, D.A., Newhouse, J.M., Spatocco, B.L., Chung, B., Burke, P.J., Bradwell, D.J., Jiang, K., Tomaszowska, A.A., Wang, K., Wei, W., Ortiz, L.A., Barriga, S.A., Poizeau, S.M., Sadoway, D.R.: Liquid metal batteries: past, present, and future. Chem. Rev. 113(3), 2075–2099 (2013)CrossRefGoogle Scholar
  13. 13.
    Kim, H., Boysen, D.A., Ouchi, T., Sadoway, D.R.: Calcium-bismuth electrodes for large-scale energy storage (liquid metal batteries). J. Power Sources 241, 239–248 (2013)CrossRefGoogle Scholar
  14. 14.
    Köllner, T., Boeck, T., Schumacher, J.: Thermal Rayleigh–Marangoni convection in a three-layer liquid-metal-battery model. Phys. Rev. E 95, 053114 (2017)CrossRefGoogle Scholar
  15. 15.
    Moreau, R., Evans, J.W.: An analysis of the hydrodynamics of aluminum reduction cells. J. Electrochem. Soc. 131(10), 2251–2259 (1984)CrossRefGoogle Scholar
  16. 16.
    Ouchi, T., Kim, H., Spatocco, B.L., Sadoway, D.R.: Calcium-based multi-element chemistry for grid-scale electrochemical energy storage. Nat. Commun. 7, 10999 (2016)CrossRefGoogle Scholar
  17. 17.
    Rüdiger, G., Schultz, M., Shalybkov, D., Hollerbach, R.: Theory of current-driven instability experiments in magnetic Taylor-Couette flows. Phys. Rev. E 76, 056309 (2007)CrossRefGoogle Scholar
  18. 18.
    Seilmayer, M., Stefani, F., Gundrum, T., Weier, T., Gerbeth, G., Gellert, M., Rüdiger, G.: Experimental evidence for a transient Tayler instability in a cylindrical liquid-metal column. Phys. Rev. Lett. 108, 244501 (2012)CrossRefGoogle Scholar
  19. 19.
    Sele, T.: Instabilities of the metal surface in electrolyte alumina reduction cells. Met. Mat. Trans. B 8, 613 (1977)CrossRefGoogle Scholar
  20. 20.
    Shen, Y., Zikanov, O.: Thermal convection in a liquid metal battery. Theor. Comp. Fluid Dyn. 30(4), 275–294 (2016)CrossRefGoogle Scholar
  21. 21.
    Sneyd, A., Wang, A.: Interfacial instability due to MHD mode coupling in aluminium reduction cells. J. Fluid Mech. 263, 343–360 (1994)CrossRefMATHGoogle Scholar
  22. 22.
    Stefani, F., Weier, T., Gundrum, T., Gerbeth, G.: How to circumvent the size limitation of liquid metal batteries due to the Tayler instability. Energy Conv. Manag. 52(8–9), 2982–2986 (2011)CrossRefGoogle Scholar
  23. 23.
    Sun, H., Zikanov, O., Ziegler, D.P.: Non-linear two-dimensional model of melt flows and interface instability in aluminum reduction cells. Fluid Dyn. Res. 35(4), 255–274 (2004)CrossRefMATHGoogle Scholar
  24. 24.
    Urata, N.: Magnetics and metal pad instability. In: Essential Readings in Light Metals, pp. 330–335. Springer (2016)Google Scholar
  25. 25.
    Wang, K., Jiang, K., Chung, B., Ouchi, T., Burke, P.J., Boysen, D.A., Bradwell, D.J., Kim, H., Muecke, U., Sadoway, D.R.: Lithium-antimony-lead liquid metal battery for grid-level energy storage. Nature 514(7522), 348–350 (2014)CrossRefGoogle Scholar
  26. 26.
    Weber, N., Beckstein, P., Herreman, W., Horstmann, G.M., Nore, C., Stefani, F., Weier, T.: Sloshing instability and electrolyte layer rupture in liquid metal batteries. Phys. Fluids 29(5), 054101 (2017)CrossRefGoogle Scholar
  27. 27.
    Weber, N., Galindo, V., Priede, J., Stefani, F., Weier, T.: The influence of current collectors on Tayler instability and electro-vortex flows in liquid metal batteries. Phys. Fluids 27(1), 014103 (2015)CrossRefGoogle Scholar
  28. 28.
    Weber, N., Galindo, V., Stefani, F., Weier, T.: Current-driven flow instabilities in large-scale liquid metal batteries, and how to tame them. J. Power Sources 265, 166–173 (2014)CrossRefGoogle Scholar
  29. 29.
    Weber, N., Nimtz, M., Personnettaz, P., Salas, A., Weier, T.: Electromagnetically driven convection suitable for mass transfer enhancement in liquid metal batteries. arXiv preprint arXiv:1802.02214 (2018)
  30. 30.
    Xiang, L., Zikanov, O.: Subcritical convection in an internally heated layer. Phys. Rev. Fluids 2, 063501 (2017)CrossRefGoogle Scholar
  31. 31.
    Xu, J., Kjos, O.S., Osen, K.S., Martinez, A.M., Kongstein, O.E., Haarberg, G.M.: Na–Zn liquid metal battery. J. Power Sources 332, 274–280 (2016)CrossRefGoogle Scholar
  32. 32.
    Zikanov, O.: Metal pad instabilities in liquid metal batteries. Phys. Rev. E 92(6), 063021 (2015)MathSciNetCrossRefGoogle Scholar
  33. 33.
    Zikanov, O., Thess, A., Davidson, P.A., Ziegler, D.P.: A new approach to numerical simulation of melt flows and interface instability in Hall Heroult cells. Metall. Mater. Trans. B 31, 1541–1550 (2000)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Mechanical EngineeringUniversity of Michigan-DearbornDearbornUSA

Personalised recommendations