Full-order optimal compensators for flow control: the multiple inputs case

Original Article

Abstract

Flow control has been the subject of numerous experimental and theoretical works. We analyze full-order, optimal controllers for large dynamical systems in the presence of multiple actuators and sensors. The full-order controllers do not require any preliminary model reduction or low-order approximation: this feature allows us to assess the optimal performance of an actuated flow without relying on any estimation process or further hypothesis on the disturbances. We start from the original technique proposed by Bewley et al. (Meccanica 51(12):2997–3014, 2016.  https://doi.org/10.1007/s11012-016-0547-3), the adjoint of the direct-adjoint (ADA) algorithm. The algorithm is iterative and allows bypassing the solution of the algebraic Riccati equation associated with the optimal control problem, typically infeasible for large systems. In this numerical work, we extend the ADA iteration into a more general framework that includes the design of controllers with multiple, coupled inputs and robust controllers (\(\mathcal {H}_{\infty }\) methods). First, we demonstrate our results by showing the analytical equivalence between the full Riccati solutions and the ADA approximations in the multiple inputs case. In the second part of the article, we analyze the performance of the algorithm in terms of convergence of the solution, by comparing it with analogous techniques. We find an excellent scalability with the number of inputs (actuators), making the method a viable way for full-order control design in complex settings. Finally, the applicability of the algorithm to fluid mechanics problems is shown using the linearized Kuramoto–Sivashinsky equation and the Kármán vortex street past a two-dimensional cylinder.

Keywords

Flow control Optimization Stability analysis 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bewley, T., Luchini, P., Pralits, J.O.: Methods for solution of large optimal control problems that bypass open-loop model reduction. Meccanica 51(12), 2997–3014 (2016).  https://doi.org/10.1007/s11012-016-0547-3 MathSciNetCrossRefMATHGoogle Scholar
  2. 2.
    Abergel, F., Temam, R.: On some control problems in fluid mechanics. Theor. Comput. Fluid Dyn. 1, 303–325 (1990).  https://doi.org/10.1007/BF00271794 CrossRefMATHGoogle Scholar
  3. 3.
    Kim, J., Bewley, T.R.: A linear systems approach to flow control. Ann. Rev. Fluid Mech. 39, 39–383 (2007).  https://doi.org/10.1146/annurev.fluid.39.050905.110153 MathSciNetCrossRefMATHGoogle Scholar
  4. 4.
    Fabbiane, N., Semeraro, O., Bagheri, S., Henningson, D.S.: Adaptive and model-based control theory applied to convectively unstable flows. Appl. Mech. Rev. 66(6), 060801 (2014).  https://doi.org/10.1115/1.4027483 Google Scholar
  5. 5.
    Sipp, D., Schmid, P.J.: Linear closed-loop control of fluid instabilities and noise-induced perturbations: a review of approaches and tools. Appl. Mech. Rev. 68(2), 020801 (2016).  https://doi.org/10.1115/1.4033345 CrossRefGoogle Scholar
  6. 6.
    Semeraro, O., Bagheri, S., Brandt, L., Henningson, D.S.: Transition delay in a boundary layer flow using active control. J. Fluid Mech. 731, 288–311 (2013).  https://doi.org/10.1017/jfm.2013.299 CrossRefMATHGoogle Scholar
  7. 7.
    Lewis, F.L., Vrabie, D., Syrmos, V.L.: Optimal Control. Wiley, Hoboken (2012)CrossRefMATHGoogle Scholar
  8. 8.
    Benner, P., Li, J.R., Penzl, T.: Numerical solution of large-scale Lyapunov equations, Riccati equations, and linear-quadratic optimal control problems. Numer. Linear Algebra Appl. 15, 755–777 (2008).  https://doi.org/10.1002/nla.622 MathSciNetCrossRefMATHGoogle Scholar
  9. 9.
    Benner, P.: Solving large-scale control problems. IEEE Control Syst. Mag. 24(1), 44–59 (2004).  https://doi.org/10.1109/MCS.2004.1272745 MathSciNetCrossRefGoogle Scholar
  10. 10.
    Banks, H.T., Ito, K.: A numerical algorithm for optimal feedback gains in high dimensional linear quadratic regulator problems. SIAM J. Control Optim. 29(3), 499–515 (1991).  https://doi.org/10.1137/0329029 MathSciNetCrossRefMATHGoogle Scholar
  11. 11.
    Akhtar, I., Borggaard, J., Burns, J.A., Imtiaz, H., Zietsman, L.: Using functional gains for effective sensor location in flow control: a reduced-order modelling approach. J. Fluid Mech. 781, 622–656 (2015).  https://doi.org/10.1017/jfm.2015.509 MathSciNetCrossRefMATHGoogle Scholar
  12. 12.
    Högberg, M., Bewley, T.R., Henningson, D.S.: Linear feedback control and estimation of transition in plane channel flow. J. Fluid Mech. 481, 149–175 (2003).  https://doi.org/10.1017/S0022112003003823 MathSciNetCrossRefMATHGoogle Scholar
  13. 13.
    Bamieh, B., Paganini, F., Dahleh, M.A.: Distributed control of spatially invariant systems. IEEE Trans. Autom. Control 47(7), 1091–1107 (2002).  https://doi.org/10.1109/TAC.2002.800646 MathSciNetCrossRefMATHGoogle Scholar
  14. 14.
    Chevalier, M., Hœpffner, J., Åkervik, E., Henningson, D.S.: Linear feedback control and estimation applied to instabilities in spatially developing boundary layers. J. Fluid Mech. 588, 163–187 (2007).  https://doi.org/10.1017/S0022112007007392 MathSciNetCrossRefMATHGoogle Scholar
  15. 15.
    Monokrousos, A., Brandt, L., Schlatter, P., Henningson, D.S.: Dns and les of estimation and control of transition in boundary layers subject to free-stream turbulence. Int. J. Heat Fluid Flow 29(3), 841–855 (2008).  https://doi.org/10.1016/j.ijheatfluidflow.2008.03.009 CrossRefGoogle Scholar
  16. 16.
    Carini, M., Pralits, J.O., Luchini, P.: Feedback control of vortex shedding using a full-order optimal compensator. J. Fluid Struct. 53, 15–25 (2015).  https://doi.org/10.1016/j.jfluidstructs.2014.11.011 CrossRefGoogle Scholar
  17. 17.
    Carini, M., Airiau, C., Debien, A., Léon, O., Pralits, J.O.: Global stability and control of the confined turbulent flow past a thick flat plate. Phys. Fluids 29(2), 024102 (2017).  https://doi.org/10.1063/1.4974069 CrossRefGoogle Scholar
  18. 18.
    Luchini, P., Bottaro, A.: Adjoint equations in stability analysis. Ann. Rev. Fluid 46, 493–517 (2014).  https://doi.org/10.1146/annurev-fluid-010313-141253 MathSciNetCrossRefMATHGoogle Scholar
  19. 19.
    Bewley, T.R., Moin, P., Temam, R.: DNS-based predictive control of turbulence: an optimal benchmark for feedback algorithms. J. Fluid Mech. 447(2), 179–225 (2001).  https://doi.org/10.1017/S0022112001005821 MathSciNetCrossRefMATHGoogle Scholar
  20. 20.
    Cherubini, S., Robinet, J.-C., De Palma, P.: Nonlinear control of unsteady finite-amplitude perturbations in the Blasius boundary-layer flow. J. Fluid Mech. 737, 440–465 (2013).  https://doi.org/10.1017/jfm.2013.576 MathSciNetCrossRefMATHGoogle Scholar
  21. 21.
    Kim, J., Bodony, D.J., Freund, J.B.: Adjoint-based control of loud events in a turbulent jet. J. Fluid Mech. 741, 28–59 (2014).  https://doi.org/10.1017/jfm.2013.654 MathSciNetCrossRefGoogle Scholar
  22. 22.
    Semeraro, O., Pralits, J.O., Rowley, C., Henningson, D.S.: Riccati-less approach for optimal control and estimation: an application to two-dimensional boundary layers. J. Fluid Mech. 731, 394–417 (2013).  https://doi.org/10.1017/jfm.2013.352 MathSciNetCrossRefMATHGoogle Scholar
  23. 23.
    Zhou, K., Doyle, J.C., Glover, K.: Robust and Optimal Control. Prentice Hall, Upper Saddle River (2002)MATHGoogle Scholar
  24. 24.
    Mårtensson, K.: Gradient Methods for Large-Scale and Distributed Linear Quadratic Control. Ph.D. thesis, Lund University (2012)Google Scholar
  25. 25.
    Press, W.H., Teukolsky, S.A., Vetterling, W.T., Flannery, B.P.: Numerical Recipes 3rd Edition: The Art of Scientific Computing, 3rd edn. Cambridge University Press, Cambridge (2007)MATHGoogle Scholar
  26. 26.
    Laub, A.: A schur method for solving algebraic Riccati equations. IEEE Trans. Autom. Control 24(6), 913–921 (1979)MathSciNetCrossRefMATHGoogle Scholar
  27. 27.
    Glad, T., Ljung, L.: Control Theory. CRC Press, Boca Raton (2000)Google Scholar
  28. 28.
    Fabbiane, N., Bagheri, S., Henningson, D.S.: Energy efficiency and performance limitations of linear adaptive control for transition delay. J. Fluid Mech. 810, 60–81 (2017).  https://doi.org/10.1017/jfm.2016.707 MathSciNetCrossRefMATHGoogle Scholar
  29. 29.
    Bryson, A.E.: Applied Optimal Control: Optimization, Estimation and Control. CRC Press, Boca Raton (1975)Google Scholar
  30. 30.
    Tuckerman, L.S., Barkley, D.: Bifurcation analysis for timesteppers. In: Numerical Methods for Bifurcation Problems and Large-Scale Dynamical Systems, pp. 453–466. Springer (2000).  https://doi.org/10.1007/978-1-4612-1208-9_20
  31. 31.
    Bagheri, S., Brandt, L., Henningson, D.S.: Input–output analysis, model reduction and control of the flat-plate boundary layer. J. Fluid Mech. 620, 263–298 (2009).  https://doi.org/10.1017/S0022112008004394 MathSciNetCrossRefMATHGoogle Scholar
  32. 32.
    Bagheri, S., Hœpffner, J., Schmid, P.J., Henningson, D.S.: Input-output analysis and control design applied to a linear model of spatially developing flows. Appl. Mech. Rev. (2009).  https://doi.org/10.1115/1.3077635 Google Scholar
  33. 33.
    Gumussoy, S., Henrion, D., Millstone, M., Overton, M.L.: Multiobjective robust control with HIFOO 2.0. IFAC Proc. 42(6), 144–149 (2009).  https://doi.org/10.3182/20090616-3-IL-2002.00025 CrossRefGoogle Scholar
  34. 34.
    Boyd, S., Parikh, N., Chu, E., Peleato, B., Eckstein, J., et al.: Distributed optimization and statistical learning via the alternating direction method of multipliers. Found. Trends Mach. Learn. 3(1), 1–122 (2011).  https://doi.org/10.1561/2200000016 CrossRefMATHGoogle Scholar
  35. 35.
    Mårtensson, K., Rantzer, A.: A scalable method for continuous-time distributed control synthesis. In: American Control Conference (ACC), pp. 6308–6313. IEEE (2012).  https://doi.org/10.1109/ACC.2012.6314762
  36. 36.
    Sundin, J.: Controlling the Laminar-to-Turbulent Transition in a Fluid Flow. Tech. rep, KTH (2015)Google Scholar
  37. 37.
    Giannetti, F., Luchini, P.: Structural sensitivity of the first instability of the cylinder wake. J. Fluid Mech. 581, 167–197 (2007).  https://doi.org/10.1017/S0022112007005654 MathSciNetCrossRefMATHGoogle Scholar
  38. 38.
    Marquet, O., Sipp, D., Jacquin, L.: Sensitivity analysis and passive control of cylinder flow. J. Fluid Mech. 615, 221–252 (2008).  https://doi.org/10.1017/S0022112008003662 MathSciNetCrossRefMATHGoogle Scholar
  39. 39.
    Åkervik, E., Brandt, L., Henningson, D.S., Hœpffner, J., Marxen, O., Schlatter, P.: Steady solutions of the Navier–Stokes equations by selective frequency damping. Phys. Fluids 18(6), 068102 (2006).  https://doi.org/10.1063/1.2211705 CrossRefGoogle Scholar
  40. 40.
    Fischer, P.F., Lottes, J.W., Kerkemeier, S.G.: nek5000 web page, Web page: http://nek5000.mcs.anl.gov
  41. 41.
    Patera, A.T.: A spectral element method for fluid dynamics: laminar flow in a channel expansion. J. Comput. Phys. 54(3), 468–488 (1984).  https://doi.org/10.1016/0021-9991(84)90128-1 CrossRefMATHGoogle Scholar
  42. 42.
    Fabbiane, N., Simon, B., Fischer, F., Grundmann, S., Bagheri, S., Henningson, D.S.: On the role of adaptivity for robust laminar flow control. J. Fluid Mech. (2015).  https://doi.org/10.1017/jfm.2015.45 Google Scholar
  43. 43.
    Lin, F., Fardad, M., Jovanović, M.R.: Design of optimal sparse feedback gains via the alternating direction method of multipliers. IEEE Trans. Autom. Control 58(9), 2426–2431 (2013).  https://doi.org/10.1109/TAC.2013.2257618 MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Laboratoire d’informatique pour la mécanique et les sciences de l’ingénieur (LIMSI), CNRSOrsayFrance
  2. 2.Department of Civil, Chemical and Environmental Engineering (DICCA)University of GenoaGenoaItaly

Personalised recommendations