Skip to main content
Log in

Pure axial flow of viscoelastic fluids in rectangular microchannels under combined effects of electro-osmosis and hydrodynamics

  • Original Article
  • Published:
Theoretical and Computational Fluid Dynamics Aims and scope Submit manuscript

Abstract

This paper presents an analysis of the combined electro-osmotic and pressure-driven axial flows of viscoelastic fluids in a rectangular microchannel with arbitrary aspect ratios. The rheological behavior of the fluid is described by the complete form of Phan-Thien–Tanner (PTT) model with the Gordon–Schowalter convected derivative which covers the upper convected Maxwell, Johnson–Segalman and FENE-P models. Our numerical simulation is based on the computation of 2D Poisson–Boltzmann, Cauchy momentum and PTT constitutive equations. The solution of these governing nonlinear coupled set of equations is obtained by using the second-order central finite difference method in a non-uniform grid system and is verified against 1D analytical solution of the velocity profile with less than 0.06% relative error. Also, a parametric study is carried out to investigate the effect of channel aspect ratio (width to height), wall zeta potential and the Debye–Hückel parameter on 2D velocity profile, volumetric flow rate and the Poiseuille number in the mixed EO/PD flows of viscoelastic fluids with different Weissenberg numbers. Our results show that, for low channel aspect ratios, the previous 1D analytical models underestimate the velocity profile at the channel half-width centerline in the case of favorable pressure gradients and overestimate it in the case of adverse pressure gradients. The results reveal that the inapplicability of the Debye–Hückel approximation at high zeta potentials is more significant for higher Weissenberg number fluids. Also, it is found that, under the specified values of electrokinetic parameters, there is a threshold for velocity scale ratio in which the Poiseuille number is approximately independent of channel aspect ratio.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

APG/FPG:

Adverse/favorable pressure gradient

BD :

Coefficient functions

\(\mathbf{D}\) :

Rate of deformation tensor (\(s^{-1})\)

e :

Elementary charge (\(1.6022\times 10^{-19}C)\)

\({\varvec{E}},E_z \) :

Vector/z-component of electric field (\(Vm^{-1})\)

\(f\left( {\tau _{kk} } \right) \) :

PTT stress coefficient function

\(f_r \) :

Friction factor

\(k_B \) :

Boltzmann constant (\(1.3807\times 10^{-23}JK^{-1})\)

L, 2H, 2W :

Microchannel length/height/width (m)

M :

Coefficients of transformation function

\(n_0 \) :

Ionic number concentration (\(m^{-3})\)

p :

Pressure (Pa)

Q :

Volumetric flow rate \((m^3 s^{-1})\)

\(\hbox {Re}\) :

Reynolds number

t :

Time (s)

\(T_m \) :

Average absolute temperature (K)

\({\varvec{u}},u\) :

Vector/z-component of velocity (\(ms^{-1})\)

\(\hbox {We}_\kappa \) :

Weissenberg number

xyz :

Transverse/depth-wise/axial coordinate (m)

\(\mathbb {z}^{\pm }\) :

Valence of ions

\(\alpha \) :

Channel aspect ratio

\(\beta \) :

Stretch parameter

\(\varGamma \) :

Ratio of PD to HS velocities

\(\Delta \) :

Error index

\(\varepsilon \) :

Extensibility parameter

\(\epsilon \) :

Permittivity of the fluid (\(CV^{-1}m^{-1})\)

\(\phi / \varPhi \) :

External/total electrical potential (V)

\(\eta _p \) :

Polymer viscosity coefficient (Pa.s)

\(\kappa \) :

Debye–Hückel parameter (\(m^{-1})\)

K :

Dimensionless Debye–Hückel parameter

\(\lambda \) :

Relaxation time (s)

\(\xi \) :

PTT model parameter

\(\Pi \Pi \) :

Physical domain of the problem (\(m^{2})\)

\(\rho _e \) :

Electric charge density (\(Cm^{-3})\)

\({\varvec{\tau }} ,\tau _{kk} \) :

Polymeric/trace of extra-stress tensor (Pa)

\(\tau _{xz} ,\tau _{yz} \) :

Stream-wise shear stresses (Pa)

\(\tau _{xx} ,\tau _{yy} \) :

Transverse normal stresses (Pa)

\(\tau _{xy} \) :

Transverse shear stress (Pa)

\(\tau _w \) :

Shear stress at the wall (Pa)

\(\tau _{zz} \) :

Stream-wise normal stress (Pa)

\(\psi ,\psi _0 \) :

EDL/wall zeta potential (V)

\(\omega \) :

Parameter to calculate the relative error

ijk :

Refer to transverse/depth-wise/axial direction

HS :

Refers to Helmholtz–Smoluchowski

m :

Refers to average of parameter

\(P,\textit{NB}\) :

Refer to central node and neighbor grid point

PD :

Refers to pressure driven

PTT :

Refers to Phan-Thien–Tanner model

sPTT :

Refers to simplified PTT model

\(\psi ,u\) :

Refer to potential and velocity

g :

Relevant to the initial guess

\(\hbox {T}\) :

Transpose of the matrix

−:

Relevant to dimensionless variable/domain

\({\wedge }\) :

Relevant to transformed variable/domain

\(\square \) :

Gordon–Schowalter convected derivative

References

  1. Auroux, P.-A., Iossifidis, D., Reyes, D.R., Manz, A.: Micro total analysis systems. 2. Analytical standard operations and applications. Anal. Chem. 74(12), 2637–2652 (2002)

    Article  Google Scholar 

  2. Reyes, D.R., Iossifidis, D., Auroux, P.-A., Manz, A.: Micro total analysis systems. 1. Introduction, theory, and technology. Anal. Chem. 74(12), 2623–2636 (2002)

    Article  Google Scholar 

  3. Whitesides, G.M.: The origins and the future of microfluidics. Nature 442(7101), 368–373 (2006)

    Article  Google Scholar 

  4. Stone, H.A., Stroock, A.D., Ajdari, A.: Engineering flows in small devices: microfluidics toward a lab-on-a-chip. Annu. Rev. Fluid Mech. 36, 381–411 (2004)

    Article  MATH  Google Scholar 

  5. Li, D.: Electrokinetics in microfluidics, vol. 2. Academic Press, Cambridge (2004)

    Book  Google Scholar 

  6. Karniadakis, G., Beskok, A., Aluru, N.R.: Microflows and nanoflows: fundamentals and simulation, vol. 29. Springer, Berlin (2006)

    MATH  Google Scholar 

  7. Li, H., Wong, T.N., Nguyen, N.-T., Chai, J.C.: Numerical modeling of tunable optofluidics lens based on combined effect of hydrodynamics and electroosmosis. Int. J. Heat Mass Trans. 55(9), 2647–2655 (2012)

    Article  Google Scholar 

  8. Dutta, P., Beskok, A.: Analytical solution of combined electroosmotic/pressure driven flows in two-dimensional straight channels: finite Debye layer effects. Anal. Chem. 73(9), 1979–1986 (2001)

    Article  Google Scholar 

  9. Horiuchi, K., Dutta, P.: Heat transfer characteristics of mixed electroosmotic and pressure driven micro-flows. JSME Int. J. B-Fluid T. 49(3), 812–819 (2006)

    Article  Google Scholar 

  10. Ren, L., Escobedo, C., Li, D.: Electroosmotic flow in a microcapillary with one solution displacing another solution. J. Colloid Interface Sci. 242(1), 264–271 (2001)

    Article  Google Scholar 

  11. Li, H., Wong, T.N., Nguyen, N.-T.: A tunable optofluidic lens based on combined effect of hydrodynamics and electroosmosis. Microfluid. Nanofluid. 10(5), 1033–1043 (2011)

    Article  Google Scholar 

  12. Lettieri, G.-L., Dodge, A., Boer, G., de Rooij, N.F., Verpoorte, E.: A novel microfluidic concept for bioanalysis using freely moving beads trapped in recirculating flows. Lab Chip 3(1), 34–39 (2003)

    Article  Google Scholar 

  13. Boer, G., Dodge, A., Fluri, K., van der Schoot, B., Verpoorte, E., de Rooij, N.: Studies of hydrostatic pressure effects in electrokinetically driven \(\mu \)TAS. In: Harrison, D.J., van den Berg, A. (eds.) Micro Total Analysis Systems’ 98, Workshop, held in Banff, Canada, 13–16 October 1998, pp. 53–56. Springer, Netherlands, Dordrecht (1998)

  14. Wu, W.-T., Yang, F., Antaki, J.F., Aubry, N., Massoudi, M.: Study of blood flow in several benchmark micro-channels using a two-fluid approach. Int. J. Eng. Sci. 95, 49–59 (2015)

    Article  Google Scholar 

  15. Helton, K.L., Nelson, K.E., Fu, E., Yager, P.: Conditioning saliva for use in a microfluidic biosensor. Lab Chip 8(11), 1847–1851 (2008). https://doi.org/10.1039/B811150B

    Article  Google Scholar 

  16. Browne, A.W., Ramasamy, L., Cripe, T.P., Ahn, C.H.: A lab-on-a-chip for rapid blood separation and quantification of hematocrit and serum analytes. Lab Chip 11(14), 2440–2446 (2011). https://doi.org/10.1039/C1LC20144A

    Article  Google Scholar 

  17. Ballenger, T.F., White, J.L.: An experimental study of flow patterns in polymer fluids in the reservoir of a capillary rheometer. Chem. Eng. Sci. 25(7), 1191–1195 (1970)

    Article  Google Scholar 

  18. Boger, D., Murthy, A.R.: Flow of viscoelastic fluids through an abrupt contraction. Rheol. Acta 11(1), 61–69 (1972)

    Article  Google Scholar 

  19. Tan, K., Tiu, C.: Entry flow behaviour of viscoelastic fluids in an annulus. J. Non-Newton. Fluid Mech. 3(1), 25–40 (1977)

    Article  Google Scholar 

  20. Cable, P., Boger, D.: A comprehensive experimental investigation of tubular entry flow of viscoelastic fluids: Part I. Vortex characteristics in stable flow. AICHE J. 24(5), 869–879 (1978)

    Article  Google Scholar 

  21. Thien, N.P., Tanner, R.I.: A new constitutive equation derived from network theory. J. Non-Newton. Fluid Mech. 2(4), 353–365 (1977)

    Article  MATH  Google Scholar 

  22. Phan-Thien, N.: A nonlinear network viscoelastic model. J. Rheol. 22(3), 259–283 (1978)

    Article  MATH  Google Scholar 

  23. Gunter, S., Townsend, P., Webster, M.: The simulation of some model viscoelastic extensional flows. Int. J. Numer. Meth. Fluids 23(7), 691–710 (1996)

    Article  MATH  Google Scholar 

  24. Xue, S.-C., Phan-Thien, N., Tanner, R.: Numerical study of secondary flows of viscoelastic fluid in straight pipes by an implicit finite volume method. J. Non-Newton. Fluid Mech. 59(2), 191–213 (1995)

    Article  Google Scholar 

  25. Tomé, M., Paulo, G., Pinho, F., Alves, M.: Numerical solution of the PTT constitutive equation for unsteady three-dimensional free surface flows. J. Non-Newton. Fluid Mech. 165(5), 247–262 (2010)

    Article  MATH  Google Scholar 

  26. Akyildiz, F.: Dispersion of a solute in a Poiseuille flow of a viscoelastic fluid. Int. j. Eng. Sci. 40(8), 859–872 (2002)

    Article  Google Scholar 

  27. Alves, M.A., Pinho, F.T., Oliveira, P.J.: Study of steady pipe and channel flows of a single-mode Phan-Thien–Tanner fluid. J. Non-Newton. Fluid Mech. 101(1), 55–76 (2001)

    Article  MATH  Google Scholar 

  28. Oliveira, P.J., Pinho, F.T.: Analytical solution for fully developed channel and pipe flow of Phan-Thien–Tanner fluids. J. Fluid Mech. 387, 271–280 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  29. Pinho, F.T., Oliveira, P.J.: Axial annular flow of a nonlinear viscoelastic fluid–an analytical solution. J. Non-Newton. Fluid Mech. 93(2), 325–337 (2000)

    Article  MATH  Google Scholar 

  30. Mirzazadeh, M., Escudier, M., Rashidi, F., Hashemabadi, S.: Purely tangential flow of a PTT-viscoelastic fluid within a concentric annulus. J. Non-Newton. Fluid Mech. 129(2), 88–97 (2005)

    Article  MATH  Google Scholar 

  31. Das, S., Chakraborty, S.: Analytical solutions for velocity, temperature and concentration distribution in electroosmotic microchannel flows of a non-Newtonian bio-fluid. Anal. Chim. Acta 559(1), 15–24 (2006)

    Article  Google Scholar 

  32. Chakraborty, S.: Electroosmotically driven capillary transport of typical non-Newtonian biofluids in rectangular microchannels. Anal. Chim. Acta 605(2), 175–184 (2007)

    Article  Google Scholar 

  33. Zhao, M., Wang, S., Wei, S.: Transient electro-osmotic flow of Oldroyd-B fluids in a straight pipe of circular cross section. J. Non-Newton. Fluid Mech. 201, 135–139 (2013)

    Article  Google Scholar 

  34. Wang, S., Zhao, M., Li, X.: Transient electro-osmotic flow of generalized Maxwell fluids in a straight pipe of circular cross section. Cent. Eur. J. Phys. 12(6), 445–451 (2014)

    Google Scholar 

  35. Wang, S., Zhao, M.: Analytical solution of the transient electro-osmotic flow of a generalized fractional Maxwell fluid in a straight pipe with a circular cross-section. Eur. J. Mech.-B/Fluids 54, 82–86 (2015)

    Article  MathSciNet  Google Scholar 

  36. Escandon, J., Jimenez, E., Hernández, C., Bautista, O., Mendez, F.: Transient electroosmotic flow of Maxwell fluids in a slit microchannel with asymmetric zeta potentials. Eur. J. Mech.-B/Fluids 53, 180–189 (2015)

    Article  MathSciNet  Google Scholar 

  37. Afonso, A., Alves, M., Pinho, F.: Analytical solution of mixed electro-osmotic/pressure driven flows of viscoelastic fluids in microchannels. J. Non-Newton. Fluid Mech. 159(1), 50–63 (2009)

    Article  MATH  Google Scholar 

  38. Bird, R., Dotson, P., Johnson, N.: Polymer solution rheology based on a finitely extensible bead–spring chain model. J. Non-Newton. Fluid Mech. 7(2), 213–235 (1980)

    Article  MATH  Google Scholar 

  39. Dhinakaran, S., Afonso, A., Alves, M., Pinho, F.: Steady viscoelastic fluid flow between parallel plates under electro-osmotic forces: Phan-Thien–Tanner model. J. Colloid Interface Sci. 344(2), 513–520 (2010)

    Article  Google Scholar 

  40. Afonso, A., Alves, M., Pinho, F.: Electro-osmotic flow of viscoelastic fluids in microchannels under asymmetric zeta potentials. J. Eng. Math. 71(1), 15–30 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  41. Sousa, J., Afonso, A., Pinho, F., Alves, M.: Effect of the skimming layer on electro-osmotic–Poiseuille flows of viscoelastic fluids. Microfluid. Nanofluid. 10(1), 107–122 (2011)

    Article  Google Scholar 

  42. Zhang, Y., Wong, T.N., Yang, C., Ooi, K.T.: Electroosmotic flow in irregular shape microchannels. Int. J. Eng. Sci. 43(19), 1450–1463 (2005)

    Article  Google Scholar 

  43. Bera, S., Bhattacharyya, S.: Electroosmotic flow in the vicinity of a conducting obstacle mounted on the surface of a wide microchannel. Int. J. Eng. Sci. 94, 128–138 (2015)

    Article  Google Scholar 

  44. Ren, L., Li, D.: Electroosmotic flow in heterogeneous microchannels. J. Colloid Interface Sci. 243(1), 255–261 (2001)

    Article  Google Scholar 

  45. Yang, D.Y.: Analytical solution of mixed electroosmotic and pressure-driven flow in rectangular microchannels. Key Eng. Mat. 483, 679–683 (2011)

    Article  Google Scholar 

  46. Ooi, K., Yang, C., Chai, J., Wong, T.: Developing electro-osmotic flow in closed-end micro-channels. Int. J. Eng. Sci. 43(17), 1349–1362 (2005)

    Google Scholar 

  47. Yang, C., Wong, T.N., Ooi, K.T.: Dynamic aspects of electroosmotic flow in rectangular microchannels. Int. J. Eng. Sci. 42(13), 1459–1481 (2004)

    Google Scholar 

  48. Kang, Y., Yang, C., Huang, X.: Analysis of the electroosmotic flow in a microchannel packed with homogeneous microspheres under electrokinetic wall effect. Int. J. Eng. Sci. 42(19), 2011–2027 (2004)

    Article  Google Scholar 

  49. Tang, G., Ye, P., Tao, W.: Pressure-driven and electroosmotic non-Newtonian flows through microporous media via lattice Boltzmann method. J. Non-Newton. Fluid Mech. 165(21), 1536–1542 (2010)

    Article  MATH  Google Scholar 

  50. Zimmerman, W., Rees, J., Craven, T.: Rheometry of non-Newtonian electrokinetic flow in a microchannel T-junction. Microfluid. Nanofluid. 2(6), 481–492 (2006)

    Article  Google Scholar 

  51. Bryce, R., Freeman, M.: Abatement of mixing in shear-free elongationally unstable viscoelastic microflows. Lab Chip 10(11), 1436–1441 (2010)

    Article  Google Scholar 

  52. Vakili, M.A., Sadeghi, A., Saidi, M.H.: Pressure effects on electroosmotic flow of power-law fluids in rectangular microchannels. Theor. Comput. Fluid Dyn. 28(4), 409–426 (2014)

    Article  Google Scholar 

  53. Vakili, M.A., Sadeghi, A., Saidi, M.H., Mozafari, A.A.: Electrokinetically driven fluidic transport of power-law fluids in rectangular microchannels. Colloids Surf. A: Physicochem. Eng. Asp. 414, 440–456 (2012)

    Article  Google Scholar 

  54. Huang, Y., Chen, J., Wong, T., Liow, J.-L.: Experimental and theoretical investigations of non-Newtonian electro-osmotic driven flow in rectangular microchannels. Soft Matter 12(29), 6206–6213 (2016)

    Article  Google Scholar 

  55. Afonso, A., Pinho, F., Alves, M.: Electro-osmosis of viscoelastic fluids and prediction of electro-elastic flow instabilities in a cross slot using a finite-volume method. J. Non-Newton. Fluid Mech. 179, 55–68 (2012)

    Article  Google Scholar 

  56. Park, H., Lee, W.: Effect of viscoelasticity on the flow pattern and the volumetric flow rate in electroosmotic flows through a microchannel. Lab Chip 8(7), 1163–1170 (2008)

    Article  Google Scholar 

  57. Yang, C., Li, D.: Electrokinetic effects on pressure-driven liquid flows in rectangular microchannels. J. Colloid Interface Sci. 194(1), 95–107 (1997)

    Article  Google Scholar 

  58. Masliyah, J.H., Bhattacharjee, S.: Electrokinetic and Colloid Transport Phenomena. John Wiley & Sons, Hoboken (2006)

    Book  Google Scholar 

  59. Oliveira, P.: An exact solution for tube and slit flow of a FENE-P fluid. Acta Mech. 158(3–4), 157–167 (2002)

    Article  MATH  Google Scholar 

  60. Cruz, D., Pinho, F., Oliveira, P.: Analytical solutions for fully developed laminar flow of some viscoelastic liquids with a Newtonian solvent contribution. J. Non-Newton. Fluid Mech. 132(1), 28–35 (2005)

    Article  MATH  Google Scholar 

  61. Park, H., Lee, W.: Helmholtz–Smoluchowski velocity for viscoelastic electroosmotic flows. J. Colloid Interface Sci. 317(2), 631–636 (2008)

    Article  Google Scholar 

  62. Pletcher, R.H., Tannehill, J.C., Anderson, D.: Computational Fluid Mechanics and Heat Transfer. CRC Press, Boca Raton (2012)

    MATH  Google Scholar 

  63. Hoffmann, K.A.: Computational Fluid Dynamics for Engineers. Engineering Education System, Austin, TX (1989)

    Google Scholar 

  64. Lam, Y., Chen, X., Yang, C.: Depthwise averaging approach to cross-stream mixing in a pressure-driven microchannel flow. Microfluid. Nanofluid. 1(3), 218–226 (2005)

    Article  Google Scholar 

  65. Sousa, P., Pinho, F., Oliveira, M., Alves, M.: Efficient microfluidic rectifiers for viscoelastic fluid flow. J. Non-Newton. Fluid Mech. 165(11), 652–671 (2010)

    Article  Google Scholar 

  66. Azaiez, J., Guenette, R., Ait-Kadi, A.: Numerical simulation of viscoelastic flows through a planar contraction. J. Non-Newton. Fluid Mech. 62(2), 253–277 (1996)

    Article  Google Scholar 

  67. Vakili, M.A., Sadeghi, A., Saidi, M.H.: Pressure effects on electroosmotic flow of power-law fluids in rectangular microchannels. Theor. Comput. Fluid Dyn. 28, 1–18 (2014)

    Article  Google Scholar 

  68. Probstein, R.F.: Physicochemical Hydrodynamics: An Introduction. John Wiley & Sons, Hoboken (2005)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Hassan Saidi.

Additional information

Communicated by Tim Phillips.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Reshadi, M., Saidi, M.H. & Ebrahimi, A. Pure axial flow of viscoelastic fluids in rectangular microchannels under combined effects of electro-osmosis and hydrodynamics. Theor. Comput. Fluid Dyn. 32, 1–21 (2018). https://doi.org/10.1007/s00162-017-0428-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00162-017-0428-y

Keywords

Navigation