Advertisement

Theoretical and Computational Fluid Dynamics

, Volume 31, Issue 2, pp 189–209 | Cite as

Effective slip for flow through a channel bounded by lubricant-impregnated grooved surfaces

Original Article
  • 161 Downloads

Abstract

This study aims to investigate effective slip arising from pressure-driven flow through a slit channel bounded by lubricant-impregnated grooved surfaces. The problem for flow over longitudinal grooves is solved analytically using the methods of domain decomposition and eigenfunction expansion, while that for flow over transverse grooves is solved numerically using the front tracking method. It is found that the effective slip length and the lubricant flow rate can depend strongly on the geometry of the microstructure, the direction of flow, and the lubricant viscosity. In particular, the effective slip can be effectively enhanced by increasing the thickness of a lubricating film atop the ribs. Under the same conditions, a flow that is parallel to the lubricant-impregnated grooves will have a larger effective slip, but also a larger lubricant flow rate, when compared with the case of flow normal to the grooves. It is also shown that, in the case of transverse grooves, because of the downward displacement of the interface between the working/lubricating fluids, the effective slip length and lubricant flow rate may vary non-monotonically with the groove depth.

Keywords

Lubricant-impregnated surface Effective slip Eigenfunction expansion Front tracking method 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Anand, S., Paxson, A.T., Dhiman, R., Smith, J.D., Varanasi, K.K.: Enhanced condensation on lubricant-impregnated nanotextured surfaces. ACS Nano 6(11), 10122–10129 (2012)CrossRefGoogle Scholar
  2. 2.
    Bohn, H.F., Federle, W.: Insect aquaplaning: nepenthes pitcher plants capture prey with the peristome, a fully wettable water-lubricated anisotropic surface. Proc. Natl. Acad. Sci. USA 101(39), 14138–14143 (2004)CrossRefGoogle Scholar
  3. 3.
    Carlson, A., Kim, P., Amberg, G., Stone, H.A.: Short and long time drop dynamics on lubricated substrates. EPL 104(3), 34,008 (2013)CrossRefGoogle Scholar
  4. 4.
    Eifert, A., Paulssen, D., Varanakkottu, S.N., Baier, T., Hardt, S.: Simple fabrication of robust water-repellent surfaces with low contact-angle hysteresis based on impregnation. Adv. Mater. Interfaces 1(3), 1300,138 (2014)CrossRefGoogle Scholar
  5. 5.
    Epstein, A.K., Wong, T.S., Belisle, R.A., Boggs, E.M., Aizenberg, J.: Liquid-infused structured surfaces with exceptional anti-biofouling performance. Proc. Natl. Acad. Sci. 109(33), 13182–13187 (2012)CrossRefGoogle Scholar
  6. 6.
    Huang, X., Chrisman, J.D., Zacharia, N.S.: Omniphobic slippery coatings based on lubricant-infused porous polyelectrolyte multilayers. ACS Macro Lett. 2(9), 826–829 (2013)CrossRefGoogle Scholar
  7. 7.
    Kim, P., Wong, T.S., Alvarenga, J., Kreder, M.J., Adorno-Martinez, W.E., Aizenberg, J.: Liquid-infused nanostructured surfaces with extreme anti-ice and anti-frost performance. ACS Nano 6(8), 6569–6577 (2012)CrossRefGoogle Scholar
  8. 8.
    Lafuma, A., Quéré, D.: Slippery pre-suffused surfaces. EPL 96(5), 56,001 (2011)CrossRefGoogle Scholar
  9. 9.
    Lalia, B.S., Anand, S., Varanasi, K.K., Hashaikeh, R.: Fog-harvesting potential of lubricant-impregnated electrospun nanomats. Langmuir 29(42), 13081–13088 (2013)CrossRefGoogle Scholar
  10. 10.
    Li, J., Kleintschek, T., Rieder, A., Cheng, Y., Baumbach, T., Obst, U., Schwartz, T., Levkin, P.A.: Hydrophobic liquid-infused porous polymer surfaces for antibacterial applications. ACS Appl. Mater. Interfaces 5(14), 6704–6711 (2013)CrossRefGoogle Scholar
  11. 11.
    Liu, H., Zhang, P., Liu, M., Wang, S., Jiang, L.: Organogel-based thin films for self-cleaning on various surfaces. Adv. Mater. 25(32), 4477–4481 (2013)CrossRefGoogle Scholar
  12. 12.
    Ng, C.O., Chen, B.: Microchannel flows with superhydrophobic surfaces: Effects of phase shift of wall patterns. In: Proceedings of the 14th Asian Congress of Fluid Mechanics, pp. 1037–1041 (2013)Google Scholar
  13. 13.
    Ng, C.O., Chu, H.C.W., Wang, C.Y.: On the effects of liquid–gas interfacial shear on slip flow through a parallel-plate channel with superhydrophobic grooved walls. Phys. Fluids 22(10), 102,002 (2010)CrossRefGoogle Scholar
  14. 14.
    Ng, C.O., Wang, C.Y.: Stokes shear flow over a grating: implications for superhydrophobic slip. Phys. Fluids 21(1), 013,602 (2009)CrossRefMATHGoogle Scholar
  15. 15.
    Ng, C.O., Wang, C.Y.: Stokes flow through a periodically grooved tube. J. Fluids Eng. 132(10), 101,204 (2010)CrossRefGoogle Scholar
  16. 16.
    Ng, C.O., Wang, C.Y.: Effective slip for stokes flow over a surface patterned with two-or three-dimensional protrusions. Fluid Dyn. Res. 43(6), 065,504 (2011)CrossRefMATHGoogle Scholar
  17. 17.
    Ng, C.O., Zhou, Q.: Electro-osmotic flow through a thin channel with gradually varying wall potential and hydrodynamic slippage. Fluid Dyn. Res. 44(5), 055,507 (2012)MathSciNetCrossRefMATHGoogle Scholar
  18. 18.
    Nishimoto, S., Bhushan, B.: Bioinspired self-cleaning surfaces with superhydrophobicity, superoleophobicity, and superhydrophilicity. RSC Adv. 3(3), 671–690 (2013)CrossRefGoogle Scholar
  19. 19.
    Peskin, C.S.: Numerical analysis of blood flow in the heart. J. Comput. Phys. 25(3), 220–252 (1977)MathSciNetCrossRefMATHGoogle Scholar
  20. 20.
    Philip, J.R.: Flows satisfying mixed no-slip and no-shear conditions. ZAMP 23(3), 353–372 (1972)MathSciNetCrossRefMATHGoogle Scholar
  21. 21.
    Quéré, D.: Non-sticking drops. Rep. Prog. Phys. 68(11), 2495 (2005)CrossRefGoogle Scholar
  22. 22.
    Rajagopal, M.C., Das, S.K.: Analyses of drag on viscoelastic liquid infused bio-inspired patterned surfaces. J. Non-Newton. Fluid Mech. 228, 17–30 (2016)MathSciNetCrossRefGoogle Scholar
  23. 23.
    Rykaczewski, K., Anand, S., Subramanyam, S.B., Varanasi, K.K.: Mechanism of frost formation on lubricant-impregnated surfaces. Langmuir 29(17), 5230–5238 (2013)CrossRefGoogle Scholar
  24. 24.
    Rykaczewski, K., Paxson, A.T., Staymates, M., Walker, M.L., Sun, X., Anand, S., Srinivasan, S., McKinley, G.H., Chinn, J., Scott, J.H.J., et al.: Dropwise condensation of low surface tension fluids on omniphobic surfaces. Sci. Rep. 4, 4158 (2014)CrossRefGoogle Scholar
  25. 25.
    Schönecker, C., Baier, T., Hardt, S.: Influence of the enclosed fluid on the flow over a microstructured surface in the cassie state. J. Fluid Mech. 740, 168–195 (2014)MathSciNetCrossRefGoogle Scholar
  26. 26.
    Schönecker, C., Hardt, S.: Longitudinal and transverse flow over a cavity containing a second immiscible fluid. J. Fluid Mech. 717, 376–394 (2013)MathSciNetCrossRefMATHGoogle Scholar
  27. 27.
    Schönecker, C., Hardt, S.: Assessment of drag reduction at slippery, topographically structured surfaces. Microfluid. Nanofluid. 19(1), 199–207 (2015)CrossRefGoogle Scholar
  28. 28.
    Smith, J.D., Dhiman, R., Anand, S., Reza-Garduno, E., Cohen, R.E., McKinley, G.H., Varanasi, K.K.: Droplet mobility on lubricant-impregnated surfaces. Soft Matter 9(6), 1772–1780 (2013)CrossRefGoogle Scholar
  29. 29.
    Solomon, B.R., Khalil, K.S., Varanasi, K.K.: Drag reduction using lubricant-impregnated surfaces in viscous laminar flow. Langmuir 30(36), 10970–10976 (2014)CrossRefGoogle Scholar
  30. 30.
    Subramanyam, S.B., Rykaczewski, K., Varanasi, K.K.: Ice adhesion on lubricant-impregnated textured surfaces. Langmuir 29(44), 13414–13418 (2013)CrossRefGoogle Scholar
  31. 31.
    Tryggvason, G., Bunner, B., Esmaeeli, A., Juric, D., Al-Rawahi, N., Tauber, W., Han, J., Nas, S., Jan, Y.J.: A front-tracking method for the computations of multiphase flow. J. Comput. Phys. 169(2), 708–759 (2001)MathSciNetCrossRefMATHGoogle Scholar
  32. 32.
    Wang, C.Y.: Flow over a surface with parallel grooves. Phys. Fluids 15(5), 1114–1121 (2003)CrossRefMATHGoogle Scholar
  33. 33.
    Wexler, J.S., Jacobi, I., Stone, H.A.: Shear-driven failure of liquid-infused surfaces. Phys. Rev. Lett. 114(16), 168,301 (2015)CrossRefGoogle Scholar
  34. 34.
    Wilson, P.W., Lu, W., Xu, H., Kim, P., Kreder, M.J., Alvarenga, J., Aizenberg, J.: Inhibition of ice nucleation by slippery liquid-infused porous surfaces (SLIPS). Phys. Chem. Chem. Phys. 15(2), 581–585 (2013)CrossRefGoogle Scholar
  35. 35.
    Wong, T.S., Kang, S.H., Tang, S.K., Smythe, E.J., Hatton, B.D., Grinthal, A., Aizenberg, J.: Bioinspired self-repairing slippery surfaces with pressure-stable omniphobicity. Nature 477(7365), 443–447 (2011)CrossRefGoogle Scholar
  36. 36.
    Xiao, L., Li, J., Mieszkin, S., Di Fino, A., Clare, A.S., Callow, M.E., Callow, J.A., Grunze, M., Rosenhahn, A., Levkin, P.A.: Slippery liquid-infused porous surfaces showing marine antibiofouling properties. ACS Appl. Mater. Interfaces 5(20), 10074–10080 (2013)CrossRefGoogle Scholar
  37. 37.
    Yao, X., Hu, Y., Grinthal, A., Wong, T.S., Mahadevan, L., Aizenberg, J.: Adaptive fluid-infused porous films with tunable transparency and wettability. Nat. Mater. 12(6), 529–534 (2013)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.Department of Mechanical EngineeringThe University of Hong KongPokfulamHong Kong

Personalised recommendations