Theoretical and Computational Fluid Dynamics

, Volume 31, Issue 2, pp 127–136 | Cite as

Ground effects on separated laminar flows past an inclined flat plate

Original Article


The appearance of a ground surface can play an important role in the flow structures for the flows past a flat plate. We conduct two-dimensional numerical simulations on viscous flows past a flat plate inclined at an angle of attack of \(20^\circ \) with ground effects using a finite-volume method. Results show that the effects on the separated flow from the ground are highly dependent on the gap (G) between the plate and the ground. As the gap decreases, the strength of vortices generated from the trailing edge is restrained, which is consistent with experimental observations. Further decrease in the gap even eliminates the vortex shedding and yields a steady flow. It is also found that the flow between the gap can either be accelerated at large gap ratios (\({G/L >1}\), G is the gap, L is the plate length), or be decelerated at small gap ratios (\({G/L <1}\)). Furthermore, the numerical results show that the wake flow behind the plate can significantly change the distribution of surface shear stress on the ground. Specifically, the mean shear stress on the ground in the downstream region at a gap ratio \(G/L = 2.0\) is one order of magnitude larger than that at a small gap ratio \(G/L = 0.3\), and the length of the downstream region where the shear stress can be effectively changed is much larger than the plate length, which provides a guideline to manipulate the ground wall surface shear stress using an inclined plate in the vicinity of the wall.


Flow separation Surface shear stress Wake Vortex shedding 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Strouhal, V.: Ueber eine besondere art der tonerregung. Ann. Phys. 241, 216–251 (1878)CrossRefGoogle Scholar
  2. 2.
    von Kármán, T.: Ueber den mechanismus des widerstandes, den ein bewegter körper in einer flüssigkeit erfährt. Gottingen Nachr. Math. Phys. Kl. 12, 509–517 (1911)MATHGoogle Scholar
  3. 3.
    Bearman, P.W.: Vortex shedding from oscillating bluff bodies. Annu. Rev. Fluid Mech. 16, 195–222 (1984)CrossRefMATHGoogle Scholar
  4. 4.
    Williamson, C., Govardhan, R.: Vortex-induced vibrations. Annu. Rev. Fluid Mech. 36, 413–455 (2004)MathSciNetCrossRefMATHGoogle Scholar
  5. 5.
    Sumner, D.: Two circular cylinders in cross-flow: a review. J. Fluid Struct. 26(6), 849–899 (2010)CrossRefGoogle Scholar
  6. 6.
    Nishino, T., Roberts, G.T., Zhang, X.: Vortex shedding from a circular cylinder near a moving ground. Phys. Fluids 19(2), 025103 (2007)CrossRefMATHGoogle Scholar
  7. 7.
    Huang, W.X., Sung, H.J.: Vortex shedding from a circular cylinder near a moving wall. J. Fluid Struct. 23(7), 1064–1076 (2007)CrossRefGoogle Scholar
  8. 8.
    Nishino, T., Roberts, G.T., Zhang, X.: Unsteady RANS and detached-eddy simulations of flow around a circular cylinder in ground effect. J. Fluid Struct. 24(1), 18–33 (2008)CrossRefGoogle Scholar
  9. 9.
    Lam, K., Leung, M.: Asymmetric vortex shedding flow past an inclined flat plate at high incidence. Eur. J. Mech. B Fluids 24(1), 33–48 (2005)CrossRefMATHGoogle Scholar
  10. 10.
    Yang, D., Pettersen, B., Andersson, H.I., Narasimhamurthy, V.D.: Vortex shedding in flow past an inclined flat plate at high incidence. Phys. Fluids 24(8), 084103 (2012)CrossRefGoogle Scholar
  11. 11.
    Zhang, J., Liu, N.S., Lu, X.Y.: Route to a chaotic state in fluid flow past an inclined flat plate. Phys. Rev. E 79(4), 045306 (2009)CrossRefGoogle Scholar
  12. 12.
    Yang, D., Pettersen, B., Andersson, H., Narasimhamurthy, V.: Three-dimensional transition characteristics in the wake of an inclined flat plate. J. Phys. Conf. Ser. 318(3), 032044 (2011)CrossRefGoogle Scholar
  13. 13.
    Lam, K.M., Wei, C.T.: Numerical simulation of vortex shedding from an inclined flat plate. Eng. Appl. Comput. Fluid Mech. 4(4), 569–579 (2010)Google Scholar
  14. 14.
    Breuer, M., Jovicic, N.: Separated flow around a flat plate at high incidence: an LES investigation. J. Turbul. 2, 1–15 (2001)CrossRefGoogle Scholar
  15. 15.
    Garcia, D.L., Katz, J.: Trapped vortex in ground effect. AIAA J. 41(4), 674–678 (2003)CrossRefGoogle Scholar
  16. 16.
    Aly, A.M., Bitsuamlak, G.: Aerodynamics of ground-mounted solar panels: test model scale effects. J. Wind Eng. Ind. Aerodyn. 123, 250–260 (2013)CrossRefGoogle Scholar
  17. 17.
    Luo, S.C., Chen, Y.S.: Ground effect on flow past a wing with a NACA0015 cross-section. Exp. Therm. Fluid Sci. 40, 18–28 (2012)CrossRefGoogle Scholar
  18. 18.
    Stone, H.A., Stroock, A.D., Ajdari, A.: Engineering flows in small devices: microfluidics toward a lab-on-a-chip. Annu. Rev. Fluid Mech. 36, 381–411 (2004)CrossRefMATHGoogle Scholar
  19. 19.
    Chang, C.C., Yang, R.J.: Electrokinetic mixing in microfluidic systems. Microfluid Nanofluidics 3(5), 501–525 (2007)CrossRefGoogle Scholar
  20. 20.
    Liu, L.Y., Yuan, W.J., Wang, J.F.: Mechanisms for osteogenic differentiation of human mesenchymal stem cells induced by fluid shear stress. Biomech. Model. Mechanobiol. 9(6), 659–670 (2010)CrossRefGoogle Scholar
  21. 21.
    Provansal, M., Mathis, C., Boyer, L.: Bénard-von Kármán instability: transient and forced regimes. J. Fluid Mech. 182, 1–22 (1987)CrossRefMATHGoogle Scholar
  22. 22.
    Barkley, D., Henderson, R.D.: Three-dimensional Floquet stability analysis of the wake of a circular cylinder. J. Fluid Mech. 322, 215–241 (1996)CrossRefMATHGoogle Scholar
  23. 23.
    Weller, H.G., Tabor, G., Jasak, H., Fureby, C.: A tensorial approach to computational continuum mechanics using object-oriented techniques. Comput. Phys. 12(6), 620–631 (1998)CrossRefGoogle Scholar
  24. 24.
    Crank, J., Nicolson, P.: A practical method for numerical evaluation of solutions of partial differential equations of the heat-conduction type. Adv. Comput. Math. 6(3–4), 207–226 (1996)MathSciNetCrossRefMATHGoogle Scholar
  25. 25.
    Issa, R.I.: Solution of the implicitly discretised fluid flow equations by operator-splitting. J. Comput. Phys. 62(1), 40–65 (1986)MathSciNetCrossRefMATHGoogle Scholar
  26. 26.
    Issa, R.I., Ahmadibefrui, B., Beshay, K.R., Gosman, A.D.: Solution of the implicitly discretised reacting flow equations by operator-splitting. J. Comput. Phys. 93(2), 388–410 (1991)CrossRefMATHGoogle Scholar
  27. 27.
    Fage, A., Johansen, F.C.: On the flow of air behind an inclined flat plate of infinite span. Proc. R. Soc. Lond. A 116(773), 170–197 (1927)CrossRefMATHGoogle Scholar
  28. 28.
    Gad, I., Saleh, M.: An investigation of wall effect on separated flow around an inclined flat plate. J. Eng. Appl. Sci. 52(1), 51–70 (2005)Google Scholar
  29. 29.
    Williamson, C. H. K., Brown, G. L.: A series in \(1/\surd \)Re to represent the Strouhal–Reynolds number relationship of the cylinder wake. J. Fluids Struct. 12(8), 1073–1085 (1998). doi: 10.1006/jfls.1998.0184

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.Division of Applied MathematicsBrown UniversityProvidenceUSA
  2. 2.School of EngineeringUniversity of California at MercedMercedUSA

Personalised recommendations