Skip to main content
Log in

Rigorous theory for transient capillary imbibition in channels of arbitrary cross section

  • Original Article
  • Published:
Theoretical and Computational Fluid Dynamics Aims and scope Submit manuscript

Abstract

This article addresses a classical fluid mechanics problem where the effect of capillary action on a column of viscous liquid is analyzed by quantifying its time-dependent penetrated length in a narrow channel. Despite several past studies, a rigorous mathematical formulation of this inherently unsteady process is still unavailable, because these existing works resort to a crucial assumption only valid for mildly transient systems. The approximate theories use an integral approach where the penetration is described by equating total force acting on the domain to rate of change of total momentum. However, while doing so, the viscous resistance under temporally varying condition is assumed to be same as the resistance created by a quasi-steady velocity profile. Thus, leading order error appears due to such approximation which can only be true when the variation in time is not strong enough causing negligible transient deviation in the hydrodynamic quantities. The present paper proposes a new way to solve this problem by considering the unsteady field itself as an unknown variable. Accordingly, the analysis applies an eigenfunction expansion of the flow with unknown time-dependent amplitudes which along with the unsteady intrusion length are calculated from a system of ordinary differential equations. A comparative exploration identifies the situation for which the integral approach and the rigorous technique based on eigenfunction expansion deviate from each other. It also reveals that the two methods differ substantially in short-time dynamics at the initial stage. Then, an asymptotic perturbation shows how the two sets of results should coincide in their long-time behavior. In this way, the findings will provide a comprehensive understanding of the physics behind the transport phenomenon.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Washburn, E.W.: The dynamics of capillary flow. Phys. Rev. 17, 273–283 (1921)

    Article  Google Scholar 

  2. Lucas, R.: Ueber das Zeitgesetz des kapillaren Aufstiegs von Flussigkeiten. Kolloid Z. 23, 15–22 (1918)

    Article  Google Scholar 

  3. Szekely, J., Neumann, A.W., Chuang, Y.K.: The rate of capillary penetration and the applicability of the Washburn equation. J. Colloid Interface Sci. 35, 273–278 (1970)

    Article  Google Scholar 

  4. Chebbi, R.: Dynamics of liquid penetration into capillary tubes. J. Colloid Interface Sci. 315, 255–260 (2007)

    Article  Google Scholar 

  5. Bhattacharya, S., Gurung, D.: Derivation of governing equation describing time-dependent penetration length in channel flows driven by non-mechanical forces. Anal. Chim. Acta 666, 51–54 (2010)

    Article  Google Scholar 

  6. Azese, M.N.: Modified time dependent penetration length and inlet pressure field in rectangular and cylindrical channel flows driven by non mechanical forces. J. Fluids Eng. 133, 1112051–11120512 (2011)

    Article  Google Scholar 

  7. Zhmud, B.V., Tiberg, F., Hallstensson, K.: Dynamics of capillary rise. J. Colloid Interface Sci. 228, 263–269 (2000)

    Article  Google Scholar 

  8. Ichikawa, N., Satoda, Y.: Interface dynamics of capillary flow in a tube under negligible gravity condition. J. Colloid Interface Sci. 162, 350–355 (1993)

    Article  Google Scholar 

  9. Marmur, A., Cohen, R.D.: Characterization of porous media by the kinetics of liquid penetration: the vertical capillaries model. J. Colloid Interface Sci. 189, 299–304 (1997)

    Article  Google Scholar 

  10. Barry, D.A., Parlange, J.Y., Sander, G.C., Sivaplan, M.: A class of exact solutions of Richard’s equation. J. Hydrol. 142, 29–46 (1992)

    Article  Google Scholar 

  11. Dreyer, M., Delagado, A., Rath, H.J.: Capillary rise of liquid between parallel plates under microgravity. J. Colloid Interface Sci. 163, 158–168 (1994)

    Article  Google Scholar 

  12. Stange, M., Dreyer, M.E., Rath, H.J.: Capillary driven flow in circular cylindrical tubes. Phys. Fluids 15, 2587–2601 (2003)

    Article  MATH  Google Scholar 

  13. Fries, N., Dreyer, M.: An analytic solution of capillary rise restrained by gravity. J. Colloid Interface Sci. 320, 259–263 (2008)

    Article  Google Scholar 

  14. Bławzdziewicz, J., Bhattacharya, S.: Comment on “Drift without flux: Brownian walker with a space-dependent diffusion coefficient”. Europhys. Lett. 63, 78990 (2003)

    Google Scholar 

  15. Bhattacharya, S., Blawzdziewicz, J.: Effect of smaller species on the near-wall dynamics of a large particle in bidispersed solution. J. Chem. Phys. 128, ARTN.214704 (2008)

    Article  Google Scholar 

  16. Navardi, S., Bhattacharya, S.: Effect of confining conduit on effective viscosity of dilute colloidal suspension. J. Chem. Phys. 132, ARTN:114114 (2010)

    Article  Google Scholar 

  17. Navardi, S., Bhattacharya, S.: A new lubrication theory to derive far-field axial pressure-difference due to force singularities in cylindrical or annular vessels. J. Math. Phys. 51, ARTN:043102 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  18. Mawardi, A., Xiao, Y., Pitchumani, R.: Theoretical analysis of capillary-driven nanoparticulate slurry flow during a micromold filling process. Int. J. Multiph. Flow 34, 227–240 (2008)

    Article  Google Scholar 

  19. Housiadas, K., Georgiou, G., Tsamopoulos, J.: The steady annular extrusion of a Newtonian liquid under gravity and surface tension. Int. J. Numer. Methods Fluids 33, 1099–1119 (2000)

    Article  MATH  Google Scholar 

  20. Mitsoulis, E., Heng, F.L.: Extrudate swell of Newtonian fluids from converging and diverging annular dies. Rheol. Acta 26, 414–417 (1987)

    Article  Google Scholar 

  21. Ichikawa, N., Hosokawa, K., Maeda, R.: Interface motion of capillary driven flow in rectangular microchannel. J. Colloid Interface Sci. 280, 155–164 (2004)

    Article  Google Scholar 

  22. Fabiano, W.G., Santos, L.O.E., Philippi, P.C.: Capillary rise between parallel plates under dynamic conditions. J. Colloid Interface Sci. 344, 171–179 (2010)

    Article  Google Scholar 

  23. Navardi, S., Bhattacharya, S.: Axial pressure-difference between far-fields across a sphere in viscous flow bounded by a cylinder. Phys. Fluids 22, ARTN.103306 (2010)

    Article  Google Scholar 

  24. Bhattacharya, S., Gurung, D.K., Navardi, S.: Radial lift on a suspended finite sized sphere due to fluid inertia for low Reynolds number flow through a cylinder. J. Fluid Mech. 722, 159–186 (2013)

    Article  MATH  Google Scholar 

  25. Jong, W.R., Kuo, T.H., Ho, S.W., Chiu, H.H., Peng, S.H.: Flows in rectangular microchannels driven by capillary force and gravity. Int. Commun. Heat Mass Transf. 34, 186–196 (2007)

    Article  Google Scholar 

  26. Koser, A.E., Pan, L.C.: Measuring material relaxation and creep recovery in a microfluidic device. Lab Chip 13, 1850–1853 (2013)

    Article  Google Scholar 

  27. Kang, Y.J., Lee, S.J.: Blood viscoelasticity measurement using steady and transient flow controls of blood in a microfluidic analogue of Wheastone-bridge channe. Biomicrofluidics 7, 054122 (2013)

    Article  Google Scholar 

  28. Zilz, J., Schafer, C., Wagner, C., Poole, R.J., Alves, M.A., Linder, A.: Serpentine channels: micro-rheometers for fluid relaxation times. Lab Chip 14, 351–358 (2014)

    Article  Google Scholar 

  29. Groisman, A., Enzelberger, M., Quake, S.R.: Microfluidic memory and control devices. Science 300, 955–958 (2003)

    Article  Google Scholar 

  30. Boukellal, G., Durin, A., Valette, R., Agassant, J.F.: Evaluation of a tube-based constitutive equation using conventional and planar elongation flow optical rheometers. Rheol. Acta 50, 547–557 (2011)

    Article  Google Scholar 

  31. Perez-Orozco, J.P., Beristain, C.I., Espinosa-Paredes, G., Lobato-Calleros, C., Vernon-Carter, E.J.: Interfacial shear rheology of interacting carbohydrate polyelectrolytes at the water–oil interface using an adapted conventional rheometer. Carbohydr. Polym. 57, 45–54 (2004)

    Article  Google Scholar 

  32. Ng, T.S.: A comparative study of the extensional rheometer results on rubber compounds with values obtained by conventional industrial measuring methods. Kautsch. Gummi Kunstst. 39, 830–833 (1986)

    Google Scholar 

  33. Mason, T.G., Ganeshan, K., van Zanten, J.H., Wirtz, D., Kuo, S.C.: Particle tracking microrheology of complex fluid. Phys. Rev. Lett. 79, 3282–3285 (1997)

    Article  Google Scholar 

  34. Mason, T.G.: Estimating the viscoelastic moduli of complex fluids using the generalized Stokes–Einstein equation. Rheol. Acta 39, 371–378 (2000)

    Article  Google Scholar 

  35. Squires, T.M.: Nonlinear microrheology: bulk stresses versus direct interactions. Langmuir 24, 1147–1159 (2008)

    Article  Google Scholar 

  36. Xiao, Y., Yang, F., Pitchumani, R.: A generalized analysis of capillary flows in channels. J. Colloid Interface Sci. 298, 880–888 (2006)

    Article  Google Scholar 

  37. Waghmare, P.R., Mitra, S.K.: Modeling of combined electroosmotic and capillary flow in microchannels. Anal. Chim. Acta 663, 117–126 (2010)

    Article  Google Scholar 

  38. Das, S., Mitra, S.K.: Different regimes in vertical capillary filling. Phys. Rev. E 87, ARTN:063005 (2013)

    Google Scholar 

  39. Das, S., Waghmare, P.R., Mitra, S.K.: Early regimes of capillary filling. Phys. Rev. E 86, ARTN:067301 (2012)

    Google Scholar 

  40. Waghmare, P., Mitra, S.: On the Derivation of Pressure Field Distribution at the Entrance of a Rectangular Channel. ASME J. Fluid Eng. 132, ARTN:054502 (2010)

    Article  Google Scholar 

  41. Patankar, S.: Numerical Heat Transfer and Fluid Flow. McGraw-Hill Publisher, New York (1980)

    MATH  Google Scholar 

  42. Udugamma, R.: Transient capillary flow in charged cylinder and annulus (to be submitted) (2016)

  43. Quere, D.: Inertial capillarity. Euro. Phys. Lett. 39, 533 (1997)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Bhattacharya.

Additional information

Communicated by Tim Phillips.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bhattacharya, S., Azese, M.N. & Singha, S. Rigorous theory for transient capillary imbibition in channels of arbitrary cross section. Theor. Comput. Fluid Dyn. 31, 137–157 (2017). https://doi.org/10.1007/s00162-016-0409-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00162-016-0409-6

Keywords

Navigation