Distance estimations in unknown sea underwater conditions by power LED for robotics swarms


The aim of this paper is to measure distances between autonomous underwater vehicles using power LED as light source and photodiode as receiver in unknown light water adsorption conditions. The method is based on the attenuation of the light signal, depending principally on distance and water characteristics. In a previous paper, we proposed the use of a cheap power LED system to support acoustic devices in localization and configuration computation of an underwater robotics swarm. The idea was based on the exchange of light signals of different wavelengths, to reduce the noise, generated by LEDs; the unknown water conditions, affecting the light propagation, required a local measure of the absorption function \(a(\lambda )\) to obtain the distance between the source and the receiver. To avoid the use of many different wavelength LEDs, we investigated the influence of power and flash duration on the LED spectral emission. Starting from this experience, we are now able to measure distances without the unpractical local measure of the absorption function. In this paper we show as, modifying frequency, we shall be able to measure \(a(\lambda )\) and, consequently, the distance d.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11


  1. 1.

    dell’Erba, R., Moriconi, C.: Bio-inspired robotics. http://www.enea.it/it/produzione-scientifica/edizioni-enea/2014/bio-inspirede-robotics-proceedings. Accessed 12 May 2020

  2. 2.

    dell’Erba, R., Moriconi, C.: Harness: a robotic swarm for environmental surveillance. In: 6th IARP Workshop on Risky Interventions and Environmental Surveillance (RISE). Warsaw, Poland (2012)

  3. 3.

    Moriconi, C., dell’Erba, R.: The localization problem for harness: a multipurpose robotic swarm. In: SENSORCOMM 2012, The 6th International Conference on Sensor Technologies and Applications, 2012, pp 327–333. http://www.thinkmind.org/index.php?view=article&articleid=sensorcomm_2012_14_20_10138. Accessed 12 May 2020

  4. 4.

    Leonard, J.J., Bennett, A.A., Smith, C.M., Feder, H.: Autonomous underwater vehicle navigation. In: IEEE ICRA Workshop on Navigation of Outdoor Autonomous Vehicles (1998)

  5. 5.

    Anderson, B., Crowell, J.: Workhorse AUV-a cost-sensible new autonomous underwater vehicle for surveys/soundings, search & rescue, and research. In: Proceedings of MTSIEEE OCEANS 2005, pp. 1228–1233 (2005)

  6. 6.

    Joordens, M.A.: Design of a low cost underwater robotic research platform. In: IEEE International Conference on System of Systems Engineering, 2008. SoSE’08, pp. 1–6 (2008)

  7. 7.

    Kopman, V., Cavaliere, N., Porfiri, M.: MASUV-1: a miniature underwater vehicle with multidirectional thrust vectoring for safe animal interactions. IEEE/ASME Trans. Mechatron. 17(3), 563–571 (2012)

    Article  Google Scholar 

  8. 8.

    Shah, V.P.: Design considerations for engineering autonomous underwater vehicles. Design considerations for engineering AUVs. http://hdl.handle.net/1721.1/39893 (2007)

  9. 9.

    Xian-yi, C., Shu-qin, L., De-shen, X.: Study of self-organization model of multiple mobile robot. Int. J. Adv. Robot. Syst. (2005). https://doi.org/10.5772/5785. (ISSN 1729-8806, 2006)

    Article  Google Scholar 

  10. 10.

    Karaboga, D.: An idea based on honey bee swarm for numerical optimization. Technical report-tr06, Erciyes university, engineering faculty, computer engineering department, 2005. http://www-lia.deis.unibo.it/Courses/SistInt/articoli/bee-colony1.pdf. Accessed 12 May 2020

  11. 11.

    Wiech, J., Eremeyev, V.A., Giorgio, I.: Virtual spring damper method for nonholonomic robotic swarm self-organization and leader following. Contin. Mech. Thermodyn. 30(5), 1091–1102 (2018)

    MathSciNet  Article  ADS  Google Scholar 

  12. 12.

    Battista, A., D’Avanzo, P., Laudato, M.: Discrete systems with geometry-driven evolution: application to 1D elasticity and granular media. Mech. Res. Commun. 92(2015), 107–110 (2018)

    Article  Google Scholar 

  13. 13.

    Rapisarda, A.C., Della Corte, A., Drobnicki, R., Di Cosmo, F., Rosa, L.: A model for bone mechanics and remodeling including cell populations dynamics. ZAMM J. Appl. Math. Mech. 70(1), 9 (2018)

    MathSciNet  MATH  Google Scholar 

  14. 14.

    Bachrach, J., Beal, J., McLurkin, J.: Composable continuous-space programs for robotic swarms. Neural Comput. Appl. 19(6), 825–847 (2010)

    Article  Google Scholar 

  15. 15.

    Bo, Liu: Swarm dynamics of a group of mobile autonomous agents. Chin. Pys. Lett. 22(1), 254–257 (2005)

    Article  Google Scholar 

  16. 16.

    Chiesa, S., Taraglio, S., Pagnottelli, S., Valigi, P.: Flocking approach to spatial configuration control in underwater swarms. In: ICINCO 2012—Proceedings of the 9th International Conference on Informatics in Control, Automation and Robotics, 2012, vol. 1, pp. 313–316. http://www.scopus.com/inward/record.url?eid=2-s2.0-84867697189&partnerID=40&md5=6ba4fec66e104d57f1563f4998bce8cf. Accessed 12 May 2020

  17. 17.

    dell’Erba, R.: Determination of spatial configuration of an underwater swarm with minimum data. Int. J. Adv. Robot. Syst. 12(7), 97 (2015)

    Article  Google Scholar 

  18. 18.

    Di Cosmo, F., Laudato, M., Spagnuolo, M.: Acoustic metamaterials based on local resonances: Homogenization, optimization and applications. Adv. Struct. Mater. (2018). https://doi.org/10.1007/978-3-319-72440-9_12

    Article  Google Scholar 

  19. 19.

    Barchiesi, E., Spagnuolo, M., Placidi, L.: Mechanical metamaterials: a state of the art. Math. Mech. Solids 24(1), 212–234 (2018)

    MathSciNet  Article  Google Scholar 

  20. 20.

    Turco, E.: Tools for the numerical solution of inverse problems in structural mechanics: review and research perspectives. Eur. J. Environ. Civ. Eng. 21(5), 509–554 (2017)

    Article  Google Scholar 

  21. 21.

    Giorgio, I., Rizzi, N., Turco, E.: Continuum modelling of pantographic sheets for out-of-plane bifurcation and vibrational analysis. Proc. R. Soc. Math. Phys. Eng. Sci. (2017). https://doi.org/10.1098/rspa.2017.0636

    Article  MATH  Google Scholar 

  22. 22.

    Alibert, J.-J., Seppecher, P., Dell’isola, F.: Truss modular beams with deformation energy depending on higher displacement gradients. Math. Mech. Solids 8(1), 51–73 (2003)

    MathSciNet  Article  Google Scholar 

  23. 23.

    dell’Erba, R., Moriconi, C.: High power leds in localization of underwater robotics swarms. IFAC-Pap. 48(10), 117–122 (2015)

    Article  Google Scholar 

  24. 24.

    Rhodes, M.: Electromagnetic Propagation through the Water Column, 2004. www.wirelessfibre.co.uk

  25. 25.

    Dunbabin, M., Corke, P.I., Vasilescu, I., Rus, D.: Experiments with cooperative control of underwater robots. Int. J. Robot. Res. 28, 815–833 (2009)

    Article  Google Scholar 

  26. 26.

    Bogdan, W., Jerzi, D.: Light absorption in sea water, Springer. 2007. http://download.springer.com/static/pdf/107/bok%253A978-0-387-49560-6.pdf?auth66=1416993589_ea5bcc47d8e3ca441bbb50259745bb4b&ext=.pdf. Accessed 12 May 2020

  27. 27.

    Rosi, G., Giorgio, I., Eremeyev, V.A.: Propagation of linear compression waves through plane interfacial layers and mass adsorption in second gradient fluids. ZAMM J. Appl. Math. Mech. 93(12), 914–927 (2013)

    MathSciNet  Article  Google Scholar 

  28. 28.

    Rosi, G., Placidi, L., dell’Isola, F.: “Fast” and “slow” pressure waves electrically induced by nonlinear coupling in Biot-type porous medium saturated by a nematic liquid crystal. ZAMM J. Appl. Math. Mech. 68(2), 51 (2017)

    MathSciNet  MATH  Google Scholar 

  29. 29.

    Eremeyev, V.A., Rosi, G., Naili, S.: Comparison of anti-plane surface waves in strain-gradient materials and materials with surface stresses. Math. Mech. Solids 24(8), 2526–2535 (2018)

    MathSciNet  Article  Google Scholar 

  30. 30.

    Dell’Isola, F., Madeo, A., Placidi, L.: Linear plane wave propagation and normal transmission and reflection at discontinuity surfaces in second gradient 3D continua. ZAMM J. Appl. Math. Mech. 92(1), 52–71 (2011)

    MathSciNet  Article  Google Scholar 

  31. 31.

    Placidi, L., Rosi, G., Giorgio, I., Madeo, A.: Reflection and transmission of plane waves at surfaces carrying material properties and embedded in second-gradient materials. Math. Mech. Solids 19(5), 555–578 (2013)

    MathSciNet  Article  Google Scholar 

  32. 32.

    Abbas, I.A., Abdalla, A.-E.-N.N., Alzahrani, F.S., Spagnuolo, M.: Wave propagation in a generalized thermoelastic plate using eigenvalue approach. J. Therm. Stress. 39(11), 1367–1377 (2016)

    Article  Google Scholar 

  33. 33.

    Barchiesi, E., Laudato, M., Cosmo, F.: Wave dispersion in non-linear pantographic beams. Mech. Res. Commun. (2018). https://doi.org/10.1016/j.mechrescom.2018.11.002

    Article  Google Scholar 

Download references

Author information



Corresponding author

Correspondence to Ramiro dell’Erba.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Communicated by Andreas Öchsner.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

dell’Erba, R. Distance estimations in unknown sea underwater conditions by power LED for robotics swarms. Continuum Mech. Thermodyn. 33, 97–106 (2021). https://doi.org/10.1007/s00161-020-00889-x

Download citation


  • LED
  • Autonomous vehicle
  • Underwater robot
  • Distances measurement