Skip to main content

Advertisement

Log in

On the thermomechanics of solids surrounded by liquid media: balance equations, free energy and nonlinear diffusion

  • Original Article
  • Published:
Continuum Mechanics and Thermodynamics Aims and scope Submit manuscript

Abstract

External media surround almost all structures and bodies. Caused by thermodynamical reasons, the ambient medium, a fluid or a gas in this essay, is diffusing into or out of the solid. In consequence, the solid experiences changes in mass, volume and material properties. In order to formulate the thermodynamical balance equations for open systems of this type, it is taken into account that the diffusing liquid carries mass, linear and angular momentum, internal energy and entropy into or out of the solid. In this study, chemical reactions are omitted. All equations to be developed in this work are formulated in dependence on the spatial coordinates of the material points of the solid in the current configuration. In order to derive thermodynamically motivated models for the stress tensor, the specific entropy, the chemical potential and the fluid flux vector, an exemplary constitutive model for the Helmholtz free energy per unit mass is formulated and the second law of thermodynamics for open systems is evaluated by standard methods. Numerical simulations and analytical computations of a simple model problem display some fundamental properties of the theory.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

Orthonormal unit vectors:

\( {\mathop {\mathbf{e }}\limits ^\rightharpoonup {}}_1, {\mathop {\mathbf{e }}\limits ^\rightharpoonup {}}_2, {\mathop {\mathbf{e }}\limits ^\rightharpoonup {}}_3\)

Vector:

\( {\mathop {\mathbf{a }}\limits ^\rightharpoonup {}}=\sum \limits _{{k}=1}^3 {a_{{k}} {\mathop {\mathbf{e }}\limits ^\rightharpoonup {}}_{{k}}} \)

Tensor of second order:

\(\mathbf{A}=\sum \limits _{{i,k}=1}^3 {A_{{ik}} {\mathop {\mathbf{e }}\limits ^\rightharpoonup {}}_{{i}} \otimes {\mathop {\mathbf{e }}\limits ^\rightharpoonup {}}_{{k}} } \)

Transpose of a tensor:

\(\mathbf{A}^{\mathrm {T}}=\sum \limits _{{i,k}=1}^3 {A_{{ki}} {\mathop {\mathbf{e }}\limits ^\rightharpoonup {}}_{{i}} \otimes {\mathop {\mathbf{e }}\limits ^\rightharpoonup {}}_{{k}} } \)

Unit tensor:

\(\mathbf{1}=\sum \limits _{{k}=1}^3 { {\mathop {\mathbf{e }}\limits ^\rightharpoonup {}}_{{k}} \otimes {\mathop {\mathbf{e }}\limits ^\rightharpoonup {}}_{{k}} } \)

Inverse of a tensor:

\(\mathbf{A}^{-1}\), \(\mathbf{A}^{-1}{} \mathbf{A}=\mathbf{AA}^{-1}=\mathbf{1}\)

Scalar product between vectors:

\( {\mathop {\mathbf{a }}\limits ^\rightharpoonup {}}\cdot {\mathop {\mathbf{b }}\limits ^\rightharpoonup {}}=\sum \limits _{{k}=1}^3 {a_{{k}} b_{{k}} } \)

Vector product:

\( {\mathop {\mathbf{a }}\limits ^\rightharpoonup {}}\times {\mathop {\mathbf{b }}\limits ^\rightharpoonup {}}=\left( {a_{\mathrm{2}} b_{\mathrm{3}} -a_3 b_2 } \right) {\mathop {\mathbf{e }}\limits ^\rightharpoonup {}}_1 +\left( {a_{\mathrm{3}} b_{\mathrm{1}} -a_1 b_3 } \right) {\mathop {\mathbf{e }}\limits ^\rightharpoonup {}}_2 +\left( {a_{\mathrm{1}} b_{\mathrm{2}} -a_2 b_1 } \right) {\mathop {\mathbf{e }}\limits ^\rightharpoonup {}}_3 \)

Dyadic product:

\(\left( { {\mathop {\mathbf{a }}\limits ^\rightharpoonup {}}\otimes {\mathop {\mathbf{b }}\limits ^\rightharpoonup {}}} \right) {\mathop {\mathbf{c }}\limits ^\rightharpoonup {}}= {\mathop {\mathbf{a }}\limits ^\rightharpoonup {}}\left( { {\mathop {\mathbf{b }}\limits ^\rightharpoonup {}}\cdot {\mathop {\mathbf{c }}\limits ^\rightharpoonup {}}} \right) \)

Tensor algebraic rule:

\(\left( {\mathbf{1}\times {\mathop {\mathbf{a }}\limits ^\rightharpoonup {}}} \right) {\mathop {\mathbf{b }}\limits ^\rightharpoonup {}}= {\mathop {\mathbf{a }}\limits ^\rightharpoonup {}}\times {\mathop {\mathbf{b }}\limits ^\rightharpoonup {}}\)

Scalar product between tensors:

\(\mathbf{A}:\mathbf{B}=\sum \limits _{{k}=1}^3 {A_{{ik}} B_{{ik}} } \)

Divergence of a vector:

\(\hbox {div}\left( {\mathop {\mathbf{u }}\limits ^\rightharpoonup {}}\left( {\mathop {\mathbf{x }}\limits ^\rightharpoonup {}}_{\mathrm{S}} \right) \right) =\sum \limits _{{k}=1}^3 {\frac{\partial u_{{k}} }{\partial x_{\mathrm {Sk}}}} \)

Divergence of a tensor:

\(\hbox {div}\left( \mathbf{A}\left( {\mathop {\mathbf{x }}\limits ^\rightharpoonup {}}_{\mathrm{S}} \right) \right) =\sum \limits _{{k}=1}^3 {\frac{\partial A_{{ik}} }{\partial x_{\mathrm {Sk}}} {\mathop {\mathbf{e }}\limits ^\rightharpoonup {}}_{{i}} } \)

Differentiation rules:

\(\hbox {div}\left( {\mathop {\mathbf{x }}\limits ^\rightharpoonup {}}_{\mathrm{S}} \times \mathbf{A}\left( {\mathop {\mathbf{x }}\limits ^\rightharpoonup {}}_{\mathrm{S}} \right) \right) =\sum \limits _{{r,k=1}}^3 {A_{{rk}} {\mathop {\mathbf{e }}\limits ^\rightharpoonup {}}_{{k}} \times {\mathop {\mathbf{e }}\limits ^\rightharpoonup {}}_{{r}} } + {\mathop {\mathbf{x }}\limits ^\rightharpoonup {}}_{\mathrm{S}} \times \hbox {div}\left( \mathbf{A} \right) \) \(\hbox {div}\left( { {\mathop {\mathbf{a }}\limits ^\rightharpoonup {}}\otimes {\mathop {\mathbf{b }}\limits ^\rightharpoonup {}}} \right) = {\mathop {\mathbf{a }}\limits ^\rightharpoonup {}}\hbox {div}\left( { {\mathop {\mathbf{b }}\limits ^\rightharpoonup {}}} \right) +\hbox {grad}\left( { {\mathop {\mathbf{a }}\limits ^\rightharpoonup {}}} \right) {\mathop {\mathbf{b }}\limits ^\rightharpoonup {}}\) \(\hbox {div}\left( {\mathbf{A}^{\mathrm {T}} {\mathop {\mathbf{a }}\limits ^\rightharpoonup {}}} \right) =\hbox {div}\left( \mathbf{A} \right) \cdot {\mathop {\mathbf{a }}\limits ^\rightharpoonup {}}+\mathbf{A}:\hbox {grad}\left( { {\mathop {\mathbf{a }}\limits ^\rightharpoonup {}}} \right) \) \(\hbox {div}\left( {\varphi {\mathop {\mathbf{a }}\limits ^\rightharpoonup {}}} \right) =\varphi \hbox {div}\left( { {\mathop {\mathbf{a }}\limits ^\rightharpoonup {}}} \right) + {\mathop {\mathbf{a }}\limits ^\rightharpoonup {}}\cdot \hbox {grad}\left( \varphi \right) \) \( {\mathop {\mathbf{b }}\limits ^\rightharpoonup {}}\cdot \hbox {grad}\left( {{ {\mathop {\mathbf{a }}\limits ^\rightharpoonup {}}^{2}}/2} \right) =\left( \hbox {div}\left( { {\mathop {\mathbf{a }}\limits ^\rightharpoonup {}}\otimes {\mathop {\mathbf{b }}\limits ^\rightharpoonup {}}} \right) - {\mathop {\mathbf{a }}\limits ^\rightharpoonup {}}\hbox {div}\left( {\mathop {\mathbf{b }}\limits ^\rightharpoonup {}}\right) \right) \cdot {\mathop {\mathbf{a }}\limits ^\rightharpoonup {}}\)

Gradient of a vector:

\(\hbox {grad}\left( {\mathop {\mathbf{a }}\limits ^\rightharpoonup {}}\left( {\mathop {\mathbf{x }}\limits ^\rightharpoonup {}}_{\mathrm{S}} \right) \right) =\frac{\partial a_{{i}} }{\partial x_{\mathrm {Sk}}} {\mathop {\mathbf{e }}\limits ^\rightharpoonup {}}_{{i}} \otimes {\mathop {\mathbf{e }}\limits ^\rightharpoonup {}}_{{k}} \) \(\hbox {GRAD}\left( {\mathop {\mathbf{p }}\limits ^\rightharpoonup {}}\left( {\mathop {\mathbf{X }}\limits ^\rightharpoonup {}}_{\mathrm{S}} \right) \right) =\frac{\partial p_{{i}} }{\partial X_{\mathrm {Sk}}} {\mathop {\mathbf{e }}\limits ^\rightharpoonup {}}_{{i}} \otimes {\mathop {\mathbf{e }}\limits ^\rightharpoonup {}}_{{k}} \)

References

  1. Aifantis, E.C.: On the problem of diffusion in solids. Acta Mech. 37, 265–296 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  2. Baeck, S., Srinivasa, A.R.: Diffusion of a fluid through an elastic solid undergoing large deformation. Int. J. Nonlinear Mech. 39, 201–218 (2004)

    Article  Google Scholar 

  3. Biot, M.A.: La problème de la consolidation des matières argileuses sous une charge. Ann. Soc. Sci. Brux. B 55, 110–113 (1935)

    Google Scholar 

  4. Biot, M.A.: General theory of three-dimensional consolidation. J. Appl. Phys. 12, 155–164 (1941)

    Article  ADS  MATH  Google Scholar 

  5. Biot, M.A.: Theory of propagation of elastic waves in a fluid-saturated porous solid I: low frequency range. J. Acoust. Soc. Am. 128, 168–178 (1956)

    Article  ADS  MathSciNet  Google Scholar 

  6. Bowen, R.M.: Theory of Mixtures. Continuum Physics, pp. 1–127. Academic Press, New York (1976)

    Google Scholar 

  7. Chai, A.B., Andriyana, A., Verron, E., Johan, M.R.: Mechanical characteristics of swollen elastomers under cyclic loading. Mater. Des. 44, 566–572 (2013)

    Article  Google Scholar 

  8. Chester, S.A., Anand, L.: A coupled theory of fluid permeation and large deformations for elastomeric materials. J. Mech. Phys. Solids 58, 1879–1906 (2010)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  9. Chester, S.A., Anand, L.: A thermo-mechanically coupled theory for fluid permeation in elastomeric materials: application to thermally responsive gels. J. Mech. Phys. Solids 59, 1978–2006 (2011)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  10. Chester, S.A., Di Leo, C.V., Anand, L.: A finite element implementation of a coupled diffusion-deformation theory for elastomeric solids. Int. J. Solids Struct. 52, 1–18 (2015)

    Article  Google Scholar 

  11. Coussy, O.: Mechanics of Porous Continua. Wiley, Chichester (1994)

    MATH  Google Scholar 

  12. Coussy, O.: Poromechanics. Wiley, New York (2004)

    MATH  Google Scholar 

  13. Coussy, O., Dormieux, L., Detournay, E.: From mixture theory to Biot’s approach for porous media. Int. J. Solids Struct. 35, 4619–4635 (1998)

    Article  MATH  Google Scholar 

  14. de Boer, R.: Theory of Porous Media: Highlights in Historical Development and Current State. Springer, Berlin (2000)

    Book  MATH  Google Scholar 

  15. Delesse, M.: Pour determiner la composition des roches. Ann. Min. 13, 379–388 (1848)

    Google Scholar 

  16. Dlubek, G., Redmann, F., Krause-Rehberg, R.: Humidity-induced plasticization and antiplasticization of polyamide 6: a positron lifetime study of the local free volume. J. Appl. Polym. Sci. 84, 244–255 (2002)

    Article  Google Scholar 

  17. Duda, F.P., Souza, A.C., Fried, E.: A theory for species migration in a finitely strained solid with application to polymer network swelling. J. Mech. Phys. Solids 58, 518–529 (2010)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  18. Ehlers, W.: Poröse Medien–ein kontinuumsmechanisches Modell auf Basis der Mischungstheorie. Forschungsberichte aus dem Bereich Bauwesen, 47, University GH-Essen (1989)

  19. Ehlers, W.: Grundlegende Konzepte in der Theorie poröser Medien. Tech. Mech. 16, 63–76 (1996)

    Google Scholar 

  20. Engelhard, M., Lion, A.: Modelling the hydrothermomechanical properties of polymers close to the glass transition. Zeitschrift für Angewandte Mathematik und Mechanik 93, 102–112 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  21. Flory, P.J.: Thermodynamics of high polymer solutions. J. Chem. Phys. 10, 51–61 (1942)

    Article  ADS  Google Scholar 

  22. Flory, P.J.: Principles of Polymer Chemistry. Cornell University Press, Ithaca (1953). 16\(^{th}\) printing

    Google Scholar 

  23. Grandidier, J.C., Olivier, L., Lafarie-Frenot, M.C., Gigliottia, M.: Modelling the pressure dependent solubility in a thermoset resin for simulating pressure accelerated thermo-oxidation tests. Mech. Mater. 84, 44–54 (2015)

    Article  Google Scholar 

  24. Haseeb, A.S.M.A., Jun, T.S., Fazal, M.A., Masjuki, H.H.: Degradation of physical properties of different elastomers upon exposure to palm biodiesel. Energy 36, 1814–1819 (2011)

    Article  Google Scholar 

  25. Haupt, P.: Continuum Mechanics and Theory of Materials. Springer, Berlin (2002)

    Book  MATH  Google Scholar 

  26. Heinrich, G., Desoyer, K.: Hydromechanische Grundlagen für dir Behandlung von stationären und instationären Grundwasserströmungen I. Ing. Arch. 23, 182–185 (1955)

    Article  MATH  Google Scholar 

  27. Heinrich, G., Desoyer, K.: Hydromechanische Grundlagen für dir Behandlung von stationären und instationären Grundwasserströmungen II. Ing. Arch. 243, 81–84 (1956)

    Article  MATH  Google Scholar 

  28. Heinrich, G., Desoyer, K.: Theorie dreidimensionaler Setzungsvorgänge in Tonschichten. Ing. Arch. 30, 225–253 (1961)

    Article  MathSciNet  MATH  Google Scholar 

  29. Hutter, K.: The foundations of thermodynamics, ist basic postulates and implications. A review of modern thermodynamics. Acta Mech. 27, 1–54 (1977)

    Article  ADS  MathSciNet  Google Scholar 

  30. Khare, R.: A new approach to derivation of Van’t Hoff equation for osmotic pressure of a dilute solution. Am. Int. J. Res. Sci. Technol. Eng. Math. 11, 172–174 (2015)

    Google Scholar 

  31. Kuhl, E., Steinmann, P.: Mass- and volume-specific views on thermodynamics for open systems. Proc. R. Soc. Lond. A 459, 2547–2568 (2003)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  32. Lion, A., Dippel, B., Liebl, C.: Thermomechanical material modelling based on a hybrid free energy density depending on pressure, isochoric deformation and temperature. Int. J. Solids Struct. 51, 729–739 (2014)

    Article  Google Scholar 

  33. Liu, Q., Robission, A., Lou, Y., Suo, Z.: Kinetics of swelling under constraint. J. Appl. Phys. 116, 064901 (2013)

    Article  ADS  Google Scholar 

  34. Lou, Y., Robission, A., Cai, S., Suo, Z.: Swellable elastomers under constraint. J. Appl. Phys. 112, 034906 (2012)

    Article  ADS  Google Scholar 

  35. Müller, I.: Grundzüge der Thermodynamik. Springer, Berlin (2001)

    Book  Google Scholar 

  36. Müller, I.: A thermodynamic theory of mixtures of fluids. Arch. Ration. Mech. Anal. 28, 1–39 (1968)

    Article  MathSciNet  MATH  Google Scholar 

  37. Nigam, R.K., Singh, P.P.: Excess volume of mixing. Trans. Faraday Soc. 65, 950–964 (1969)

    Article  Google Scholar 

  38. Rambert, G., Grandidier, J.C., Cangémi, L., Meimon, Y.: A modelling of the coupled thermodiffuso-elastic linear behaviour: application to explosive decompression of polymers. Oil Gas Sci. Technol. 58, 571–591 (2003)

    Article  Google Scholar 

  39. Saijun, D., Nakason, C., Kaesaman, A., Klinpituksa, P.: Water absorption and mechanical properties of water-swellable natural rubber. Songklanakarin J. Sci. Technol. 31, 561–565 (2009)

    Google Scholar 

  40. Starkweather, H.W.: The sorption of water by nylons. J. Appl. Polym. Sci. 2, 129–133 (1959)

    Article  Google Scholar 

  41. Truesdell, C., Toupin, R.A.: The Classical Field Theories. Handbuch der Physik, vol. 3, pp. 226–902. Springer, Berlin (1960)

    Google Scholar 

  42. Truesdell, C.: Thermodynamics of Diffusion. Rational Thermodynamics, 2nd edn, pp. 219–236. Springer, Berlin (1984)

    Book  MATH  Google Scholar 

  43. Valancon, C., Ray, A., Grandidier, J.C.: Modelling of coupling between mechanics and water diffusion in bonded assemblies. Oil Gas Sci. Technol. 61, 746–759 (2006)

    Article  Google Scholar 

  44. von Bertanffy L.: The theory of open systems in physics and biology. Science 111, 23–29 (1950)

  45. Zhao, Q., Papadopoulos, P.: Modelling and simulation of liquid diffusion through a porous finitely elastic solid. Comput. Mech. 52, 553–562 (2013)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Lion.

Additional information

Communicated by Michael Johlitz, Lucien Laiarinandrasana and Yann Marco.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lion, A., Johlitz, M. On the thermomechanics of solids surrounded by liquid media: balance equations, free energy and nonlinear diffusion. Continuum Mech. Thermodyn. 32, 281–305 (2020). https://doi.org/10.1007/s00161-019-00828-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00161-019-00828-5

Keywords

Navigation