Quasiconvex envelope for a model of finite elastoplasticity with one active slip system and linear hardening


An explicit characterization of the quasiconvex envelope of the condensed energy in a model for finite elastoplasticity is presented, both in two and in three spatial dimensions. A variational formulation of plasticity, which is appropriate for the first time step in a time discrete formulation of the evolution problem, is used, and it is assumed that only one slip system is active. The model includes a nonlinear elastic energy, which is invariant under SO(n), and an effective plastic contribution which is quadratic in the slip parameter. The quasiconvex envelope arises via the formation of first-order laminates.

This is a preview of subscription content, access via your institution.


  1. 1.

    Aubry, S., Fago, M., Ortiz, M.: A constrained sequential-lamination algorithm for the simulation of sub-grid microstructure in martensitic materials. J. Comput. Methods Appl. Mech. Eng. 192, 2823–2843 (2003)

    ADS  MathSciNet  Article  Google Scholar 

  2. 2.

    Ball, J.M., Murat, F.: \(W^{1, p}\) quasiconvexity and variational problems for multiple integrals. J. Funct. Anal. 58, 225–253 (1984)

    MathSciNet  Article  Google Scholar 

  3. 3.

    Bartels, S., Carstensen, C., Hackl, K., Hoppe, U.: Effective relaxation for microstructure simulations: algorithms and applications. Comput. Methods Appl. Mech. Eng. 193, 5143–5175 (2004)

    ADS  MathSciNet  Article  Google Scholar 

  4. 4.

    Carstensen, C., Conti, S., Orlando, A.: Mixed analytical–numerical relaxation in finite single-slip crystal plasticity. Contin. Mech. Thermodyn. 20, 275–301 (2008)

    ADS  MathSciNet  Article  Google Scholar 

  5. 5.

    Carstensen, C., Hackl, K., Mielke, A.: Non-convex potentials and microstructures in finite-strain plasticity. Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 458, 299–317 (2002)

    ADS  MathSciNet  Article  Google Scholar 

  6. 6.

    Cicalese, M., Fusco, N.: A note on relaxation with constraints on the determinant. ESAIM: Cocv. http://cvgmt.sns.it/paper/3506/ (2017) (to appear)

  7. 7.

    Conti, S.: Relaxation of single-slip single-crystal plasticity with linear hardening. In: Gumbsch, P. (ed.) Multiscale Materials Modeling, pp. 30–35. Fraunhofer IRB, Freiburg (2006)

    Google Scholar 

  8. 8.

    Conti, S.: Quasiconvex functions incorporating volumetric constraints are rank-one convex. J. Math. Pures Appl. 90, 15–30 (2008)

    MathSciNet  Article  Google Scholar 

  9. 9.

    Conti, S., Dolzmann, G.: Rank-one convexity of quasiconvex functions with determinant constraints (in preparation)

  10. 10.

    Conti, S., Dolzmann, G.: On the theory of relaxation in nonlinear elasticity with constraints on the determinant. Arch. Ration. Mech. Anal. 217, 413–437 (2015)

    MathSciNet  Article  Google Scholar 

  11. 11.

    Conti, S., Dolzmann, G.: Relaxation in crystal plasticity with three active slip systems. Contin. Mech. Thermodyn. 28, 1477–1494 (2016)

    ADS  MathSciNet  Article  Google Scholar 

  12. 12.

    Conti, S., Dolzmann, G.: Numerical study of microstructures in single-slip finite elastoplasticity. J. Optim. Theory Appl. (2018). https://doi.org/10.1007/s10957-018-01460-0

    Article  MATH  Google Scholar 

  13. 13.

    Conti, S., Dolzmann, G.: Optimal laminates in single-slip elastoplasticity. Disc. Cont. Dyn. Syst. Ser. (2019) (in press)

  14. 14.

    Conti, S., Dolzmann, G., Kreisbeck, C.: Asymptotic behavior of crystal plasticity with one slip system in the limit of rigid elasticity. SIAM J. Math. Anal. 43, 2337–2353 (2011)

    MathSciNet  Article  Google Scholar 

  15. 15.

    Conti, S., Dolzmann, G., Kreisbeck, C.: Relaxation and microstructure in a model for finite crystal plasticity with one slip system in three dimensions. Discrete Contin. Dyn. Syst. Ser. 6, 1–16 (2013)

    MathSciNet  MATH  Google Scholar 

  16. 16.

    Conti, S., Theil, F.: Single-slip elastoplastic microstructures. Arch. Ration. Mech. Anal. 178, 125–148 (2005)

    MathSciNet  Article  Google Scholar 

  17. 17.

    Dacorogna, B.: Direct Methods in the Calculus of Variations. Applied Mathematical Sciences, vol. 78. Springer, Berlin (1989)

    Book  Google Scholar 

  18. 18.

    Davoli, E., Francfort, G.A.: A critical revisiting of finite elasto-plasticity. SIAM J. Math. Anal. 47(1), 526–565 (2015)

    MathSciNet  Article  Google Scholar 

  19. 19.

    Fonseca, I.: The lower quasiconvex envelope of the stored energy function for an elastic crystal. J. Math. Pures Appl. 67, 175–195 (1988)

    MathSciNet  MATH  Google Scholar 

  20. 20.

    Kochmann, D., Hackl, K.: The evolution of laminates in finite crystal plasticity: a variational approach. Contin. Mech. Thermodyn. 23, 63–85 (2011)

    ADS  MathSciNet  Article  Google Scholar 

  21. 21.

    Kröner, E.: Allgemeine Kontinuumstheorie der Versetzungen und Eigenspannungen. Arch. Ration. Mech. Anal. 4, 273–334 (1960)

    MathSciNet  Article  Google Scholar 

  22. 22.

    Lee, E.H.: Elastic–plastic deformation at finite strains. J. Appl. Mech. 36, 1–6 (1969)

    ADS  Article  Google Scholar 

  23. 23.

    Miehe, C., Lambrecht, M., Gürses, E.: Analysis of material instabilities in inelastic solids by incremental energy minimization and relaxation methods: evolving deformation microstructures in finite plasticity. J. Mech. Phys. Solids 52, 2725–2769 (2004)

    ADS  MathSciNet  Article  Google Scholar 

  24. 24.

    Müller, S.: Variational models for microstructure and phase transitions. In: Bethuel F. et al. (eds.) Calculus of Variations and Geometric Evolution Problems. Springer Lecture Notes in Mathematics, vol. 1713, pp. 85–210. Springer (1999)

  25. 25.

    Müller, S., Šverák, V.: Convex integration with constraints and applications to phase transitions and partial differential equations. J. Eur. Math. Soc. 1, 393–442 (1999)

    MathSciNet  Article  Google Scholar 

  26. 26.

    Ortiz, M., Repetto, E.A.: Nonconvex energy minimization and dislocation structures in ductile single crystals. J. Mech. Phys. Solids 47(2), 397–462 (1999)

    ADS  MathSciNet  Article  Google Scholar 

  27. 27.

    Reina, C., Conti, S.: Kinematic description of crystal plasticity in the finite kinematic framework: a micromechanical understanding of \(F=F^e F^p\). J. Mech. Phys. Solids 67, 40–61 (2014)

    ADS  MathSciNet  Article  Google Scholar 

Download references


This work was partially supported by the Deutsche Forschungsgemeinschaft through the Sonderforschungsbereich 1060 “The mathematics of emergent effects”, Project A5.

Author information



Corresponding author

Correspondence to Sergio Conti .

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Communicated by Andreas Öchsner.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Conti , S., Dolzmann, G. Quasiconvex envelope for a model of finite elastoplasticity with one active slip system and linear hardening. Continuum Mech. Thermodyn. 32, 1187–1196 (2020). https://doi.org/10.1007/s00161-019-00825-8

Download citation


  • Quasiconvexity
  • Relaxation
  • Elastoplasticity