A variational framework for the modeling of glassy polymers under finite strains


In this paper, a viscoelastic model able to capture important mechanical features of a wide class of glassy polymers is presented. Among them, the ability of reproducing the highly nonlinear rate-dependent stress response and the post-yield strain softening phenomenon. The simplicity of the proposition allows to recover the same mathematical structure of classical constitutive approaches, well suited for the use of implicit finite element codes. To this aim, the flow resistance concept, elsewhere known as shear strength, is reframed as a state variable of an accumulated strain measure. Three alternative expressions for this function are presented. The model is cast within a variational framework in which consistent constitutive updates are obtained by a minimization procedure. Convenient choices for the conservative and dissipative potentials reduce the local constitutive problem to the solution of a single nonlinear scalar equation, emulating the simplest case of viscoelastic models. Numerical tests on the constitutive model show excellent agreement with experimental data. Finally, a 3D simulation of a standard specimen with heterogeneous material properties illustrates the ability of the present proposition to be implemented in implicit finite element codes.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13


  1. 1.

    Kurtz, S.M., Devine, J.N.: PEEK biomaterials in trauma, orthopedic, and spinal implants. Biomaterials 28, 4845–4869 (2007)

    Article  Google Scholar 

  2. 2.

    Smith, K.E., Temenoff, J.S., Gall, K.: On the toughness of photopolymerizable (meth)acrylate networks for biomedical applications. J. Appl. Polym. Sci. 114, 2711–2722 (2009)

    Article  Google Scholar 

  3. 3.

    Ulery, B.D., Nair, L.S., Laurencin, C.T.: Biomedical applications of biodegradable polymers. J. Polym. Sci. B 49, 832–864 (2011)

    Article  Google Scholar 

  4. 4.

    Miller, A.T., Safranski, D.L., Smith, K.E., Guldberg, R.E., Gall, K.: Compressive cyclic ratcheting and fatigue of synthetic, soft biomedical polymers in solution. J. Mech. Behav. Biomed. Mater. 54, 268–282 (2016)

    Article  Google Scholar 

  5. 5.

    Spitzig, W.A., Richmond, O.: Effect of hydrostatic pressure on the deformation behavior of polyethylene and polycarbonate in tension and in compression. Polym. Eng. Sci. 19, 1129–1139 (1979)

    Article  Google Scholar 

  6. 6.

    G’Sell, C., Hiver, J.M., Dahoun, A., Souahi, A.: Video-controlled tensile testing of polymers and metals beyond the necking point. J. Mater. Sci. 27, 5031–5039 (1992)

    ADS  Article  Google Scholar 

  7. 7.

    Arruda, E.M., Boyce, M.C., Jayachandran, R.: Effects of strain rate, temperature and thermomechanical coupling on the finite strain deformation of glassy polymers. Mech. Mater. 19, 193–212 (1995)

    Article  Google Scholar 

  8. 8.

    Khan, A., Zhang, H.: Finite deformation of a polymer: experiments and modeling. Int. J. Plast. 17, 1167–1188 (2001)

    MATH  Article  Google Scholar 

  9. 9.

    Nakafuku, C., Takehisa, S.Y.: Glass transition and mechanical properties of PLLA and PDLLA-PGA copolymer blends. J. Appl. Polym. Sci. 93, 2164–2173 (2004)

    Article  Google Scholar 

  10. 10.

    Khan, A.S., Lopez-Pamies, O., Kazmi, R.: Thermo-mechanical large deformation response and constitutive modeling of viscoelastic polymers over a wide range of strain rates and temperatures. Int. J. Plast. 22, 581–601 (2006)

    MATH  Article  Google Scholar 

  11. 11.

    Richeton, J., Ahzi, S., Vecchio, K.S., Jiang, F.C., Adharapurapu, R.R.: Influence of temperature and strain rate on the mechanical behavior of three amorphous polymers: characterization and modeling of the compressive yield stress. Int. J. Solids Struct. 43, 2318–2335 (2006)

    Article  Google Scholar 

  12. 12.

    Dreistadt, C., Bonnet, A.S., Chevrier, P., Lipinski, P.: Experimental study of the polycarbonate behaviour during complex loadings and comparison with the Boyce, Parks and Argon model predictions. Mater. Des. 30, 3126–3140 (2009)

    Article  Google Scholar 

  13. 13.

    Ames, N.M., Srivastava, V., Chester, S.A., Anand, L.: A thermo-mechanically coupled theory for large deformations of amorphous polymers. Part II: applications. Int. J. Plast. 25, 1495–1539 (2009)

    MATH  Article  Google Scholar 

  14. 14.

    Wright, D.D., Lautenschlager, E.P., Gilbert, J.L.: The effect of processing conditions on the properties of poly(methyl methacrylate) fibers. J. Biomed. Mater. Res. 63, 152–160 (2002)

    Article  Google Scholar 

  15. 15.

    Viana, J.C., Alves, N.M., Mano, J.F.: Morphology and mechanical properties of injection molded poly(ethylene terephthalate). Polym. Eng. Sci. 44, 2174–2184 (2004)

    Article  Google Scholar 

  16. 16.

    Holopainen, S.: Modeling of the mechanical behavior of amorphous glassy polymers under variable loadings and comparison with state-of-the-art model predictions. Mech. Mater. 66, 35–58 (2013)

    Article  Google Scholar 

  17. 17.

    Gudimetla, M.R., Doghri, I.: A finite strain thermodynamically-based constitutive framework coupling viscoelasticity and viscoplasticity with application to glassy polymers. Int. J. Plast. 98, 197–216 (2017)

    Article  Google Scholar 

  18. 18.

    Haward, R.N., Thackray, G.: The use of a mathematical model to describe isothermal stress–strain curves in glassy thermoplastics. Proc. R. Soc. Lond. A 302, 453–472 (1968)

    ADS  Article  Google Scholar 

  19. 19.

    Bagepalli, B.S.: Finite strain elastic-plastic deformation of glassy polymers. Ph.D. thesis, Massachusetts Institute of Technology (1984)

  20. 20.

    Boyce, M.C., Parks, D.M., Argon, A.S.: Large inelastic deformation of glassy polymers. Part I: rate dependent constitutive model. Mech. Mater. 7, 15–33 (1988)

    Article  Google Scholar 

  21. 21.

    Anand, L., Gurtin, M.E.: A theory of amorphous solids undergoing large deformations, with application to polymeric glasses. Int. J. Solids Struct. 40, 1465–1487 (2003)

    MATH  Article  Google Scholar 

  22. 22.

    Poulain, X., Benzerga, A.A., Goldberg, R.K.: Finite-strain elasto-viscoplastic behavior of an epoxy resin: experiments and modeling in the glassy regime. Int. J. Plast. 62, 138–161 (2014)

    Article  Google Scholar 

  23. 23.

    Srivastava, V., Chester, S.A., Ames, N.M., Anand, L.: A thermo-mechanically-coupled large-deformation theory for amorphous polymers in a temperature range which spans their glass transition. Int. J. Plast. 26, 1138–1182 (2010)

    MATH  Article  Google Scholar 

  24. 24.

    Ortiz, M., Stainier, L.: The variational formulation of viscoplastic constitutive updates. Comput. Methods Appl. Mech. Eng. 171, 419–44 (1999)

    ADS  MathSciNet  MATH  Article  Google Scholar 

  25. 25.

    Radovitzky, R., Ortiz, M.: Error estimation and adaptive meshing in strongly nonlinear dynamic problems. Comput. Methods Appl. Mech. Eng. 172, 203–240 (1999)

    ADS  MathSciNet  MATH  Article  Google Scholar 

  26. 26.

    Yang, Q., Stainier, L., Ortiz, M.: A variational formulation of the coupled thermo-mechanical boundary-value problem for general dissipative solids. J. Mech. Phys. Solids 54, 401–424 (2006)

    ADS  MathSciNet  MATH  Article  Google Scholar 

  27. 27.

    Fancello, E.A., Ponthot, J.-P., Stainier, L.: A variational formulation of constitutive models and updates in non-linear finite viscoelasticity. Int. J. Numer. Methods Eng. 65, 1831–1864 (2006)

    MATH  Article  Google Scholar 

  28. 28.

    Mosler, J., Bruhns, O.T.: Towards variational constitutive updates for non-associative plasticity models at finite strain: models based on a volumetric-deviatoric split. Int. J. Solids Struct. 46, 1676–1684 (2009)

    MathSciNet  MATH  Article  Google Scholar 

  29. 29.

    Mosler, J.: Variationally consistent modeling of finite strain plasticity theory with non-linear kinematic hardening. Comput. Methods Appl. Mech. Eng. 199, 2753–2764 (2010)

    ADS  MathSciNet  MATH  Article  Google Scholar 

  30. 30.

    Kintzel, O., Mosler, J.: An incremental minimization principle suitable for the analysis of low cycle fatigue in metals: a coupled ductile-brittle damage model. Comput. Methods Appl. Mech. Eng. 200(45–46), 3127–3138 (2011)

    ADS  MathSciNet  MATH  Article  Google Scholar 

  31. 31.

    El Sayed, T., Mota, A., Fraternali, F., Ortiz, M.: A variational constitutive model for soft biological tissues. J. Biomech. 41(7), 1458–66 (2008)

    Article  Google Scholar 

  32. 32.

    Vassoler, J.M., Reips, L., Fancello, E.A.: A variational framework for fiber-reinforced viscoelastic soft tissues. Int. J. Numer. Methods Eng. 89, 1691–1706 (2012)

    MathSciNet  MATH  Article  Google Scholar 

  33. 33.

    Stainier, L., Ortiz, M.: Study and validation of a variational theory of thermo mechanical coupling in finite visco-plasticity. Int. J. Solids Struct. 47, 705–715 (2010)

    MATH  Article  Google Scholar 

  34. 34.

    Miehe, C.: A multi-field incremental variational framework for gradient-extended standard dissipative solids. J. Mech. Phys. Solids 59, 898–923 (2011)

    ADS  MathSciNet  MATH  Article  Google Scholar 

  35. 35.

    Stainier, L.: Consistent incremental approximation of dissipation pseudo-potentials in the variational formulation of thermo-mechanical constitutive updates. Mech. Res. Commun. 38, 315–319 (2011)

    MATH  Article  Google Scholar 

  36. 36.

    Bleier, N., Mosler, J.: Efficient variational constitutive updates by means of a novel parameterization of the flow rule. Int. J. Numer. Methods Eng. 89, 1120–1143 (2012)

    MathSciNet  MATH  Article  Google Scholar 

  37. 37.

    Brassart, L., Stainier, L., Doghri, I., Delannay, L.: A variational formulation for the incremental homogenization of elasto-plastic composites. J. Mech. Phys. Solids 59, 2455–2475 (2011)

    ADS  MathSciNet  MATH  Article  Google Scholar 

  38. 38.

    Brassart, L., Stainier, L., Doghri, I., Delannay, L.: Homogenization of elasto-(visco) plastic composites based on an incremental variational principle. Int. J. Plast. 36, 86–112 (2012)

    MATH  Article  Google Scholar 

  39. 39.

    Brassart, L., Stainier, L.: On convergence properties of variational constitutive updates for elasto-visco-plasticity. GAMM-Mitteilungen 35, 26–42 (2012)

    MathSciNet  MATH  Article  Google Scholar 

  40. 40.

    Bartels, A., Bartel, T., Canadija, M., Mosler, J.: On the thermomechanical coupling in dissipative materials: a variational approach for generalized standard materials. J. Mech. Phys. Solids 82, 218–234 (2015)

    ADS  MathSciNet  Article  Google Scholar 

  41. 41.

    Junker, P., Hackl, K.: A condensed variational model for thermo-mechanically coupled phase transformations in polycrystalline shape memory alloys. J. Mech. Behav. Mater. 22, 111–118 (2013)

    Article  Google Scholar 

  42. 42.

    Lee, E.H.: Elastic plastic deformation at finite strain. ASME J. Appl. Mech. 36, 1–6 (1969)

    ADS  MATH  Article  Google Scholar 

  43. 43.

    Anand, L., Ames, N.M.: On modeling the micro-indentation response of an amorphous polymer. Int. J. Plast. 22, 1123–1170 (2006)

    MATH  Article  Google Scholar 

  44. 44.

    Simo, J.C., Taylor, R.L., Pister, K.S.: Variational and projection methods for the volume constraint in finite deformation elasto-plasticity. Comput. Methods Appl. Mech. Eng. 51, 177–208 (1985)

    ADS  MathSciNet  MATH  Article  Google Scholar 

  45. 45.

    Arruda, E.M., Boyce, M.C.: A three-dimensional constitutive model for the large stretch behavior of rubber elastic materials. J. Mech. Phys. Solids 41, 389–412 (1993)

    ADS  MATH  Article  Google Scholar 

  46. 46.

    Gent, A.N.: A new constitutive relation for rubber. Rubber Chem. Technol. 69(1), 59–61 (1996)

    MathSciNet  Article  Google Scholar 

  47. 47.

    Ziegler, H.: An Introduction to Thermomechanics. Elsevier, Amsterdam (1977)

    Google Scholar 

  48. 48.

    Hill, R.: A general theory of uniqueness and stability in elastic-plastic solids. J. Mech. Phys. Solids 6, 236–249 (1958)

    ADS  MATH  Article  Google Scholar 

  49. 49.

    Ceradini, G.: A maximum principle for the analysis of elastic–plastic systems. Meccanica 1, 77–82 (1966)

    MATH  Article  Google Scholar 

  50. 50.

    Maier, G.: Quadratic programming and theory of elastic-perfectly plastic structures. Meccanica 3, 236–249 (1968)

    MathSciNet  MATH  Google Scholar 

  51. 51.

    Capurso, M., Maier, G.: Incremental elastoplastic analysis and quadratic optimization. Meccanica 5, 107–116 (1970)

    MATH  Article  Google Scholar 

  52. 52.

    Pereira, N.Z., Feijoo, R.A.: On kinematical minimum principles for rates and increments in plasticity. Meccanica 21, 23–29 (1986)

    MathSciNet  MATH  Article  Google Scholar 

  53. 53.

    Martin, J.B., Reddy, B.D., Griffin, T.B., Bird, W.W.: Applications of mathematical programming concepts to incremental elastic–plastic analysis. Eng. Struct. 9, 171–176 (1987)

    Article  Google Scholar 

  54. 54.

    Mosler, J., Ortiz, M.: Variational h-adaption in finite deformation elasticity and plasticity. Int. J. Numer. Methods Eng. 72, 505–523 (2007)

    MathSciNet  MATH  Article  Google Scholar 

  55. 55.

    Mosler, J., Ortiz, M.: An error-estimate-free and remapping-free variational mesh refinement and coarsening method for dissipative solids at finite strains. Int. J. Numer. Methods Eng. 77, 437–450 (2009)

    MATH  Article  Google Scholar 

  56. 56.

    Weber, G., Anand, L.: Finite deformation constitutive equations and a time integration procedure for isotropic, hyperelastic-viscoplastic solids. Comput. Methods Appl. Mech. Eng. 79, 173–202 (1990)

    ADS  MATH  Article  Google Scholar 

  57. 57.

    Dupaix, R.B., Boyce, M.C.: Finite strain behavior of poly(ethylene terephthalate) PET and poly(ethylene terephthalate)-glycol PETG. Polymer 46, 4827–4838 (2005)

    Article  Google Scholar 

  58. 58.

    Dupaix, R.B.: Temperature and rate dependent finite strain behavior of poly(ethylene terephthalate) and poly(ethylene terephthalate)-glycol above the glass transition temperature. Ph.D. thesis, MIT (2003)

Download references


Eduardo A. Fancello and Jan-Michel C. Farias thank the financial support provided by CNPq-Brazil (Grant 313146/2017-9).

Author information



Corresponding author

Correspondence to Eduardo Alberto Fancello.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Farias, J.C., Stainier, L. & Fancello, E.A. A variational framework for the modeling of glassy polymers under finite strains. Continuum Mech. Thermodyn. 32, 1037–1055 (2020). https://doi.org/10.1007/s00161-019-00809-8

Download citation


  • Glassy polymers
  • Variational principles
  • Viscoelasticity
  • Finite strain