A novel numerical model for the prediction of patient-dependent bone density loss in microgravity based on micro-CT images

Abstract

The deterioration of the musculoskeletal system is a serious health concern for long-term space missions. The accumulated information over the past decades of space flights showed that microgravity impacts significantly the musculoskeletal system with muscle atrophy and bone loss. Until now, it has been difficult to make reasonable predictions of the bone loss for prolonged space missions due to the lack of in-space experimental data and weak understanding of the mechanobiological bone mechanisms. On earth, the healthy musculoskeletal degradation is mainly age related with osteoporosis and delayed fracture healing. A better understanding of the bone mechanobiological functions could help us improve our model predictions of the musculoskeletal health system during long-term space missions. We develop a numerical model able to predict the bone loss at the mesoscopic scale (bone trabecula) in microgravity. The model is able to correlate the calculated bone degradation mechanism with data available in the literature showing the effective bone density loss measured experimentally. An optimization algorithm is used for an average bone microstructure distribution and long-term prediction. Extrapolation is made to link the local bone loss at the structural scale with the corresponding effective bone strength. The first part of the paper details the extraction of the bone microstructure using micro-CT images and numerical model development. Next, the degradation and optimization schemes are detailed. Finally, some results are presented for long-term degradation.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

References

  1. 1.

    Keyak, J., Koyama, A., LeBlanc, A., Lu, Y., Lang, T.: Reduction in proximal femoral strength due to long-duration spaceflight. Bone 44(3), 449–453 (2009)

    Article  Google Scholar 

  2. 2.

    Vico, L., Collet, P., Guignandon, A., Lafage-Proust, M.-H., Thomas, T., Rehailia, M., Alexandre, C.: Effects of long-term microgravity exposure on cancellous and cortical weight-bearing bones of cosmonauts. Lancet 355(9215), 1607–1611 (2000)

    Article  Google Scholar 

  3. 3.

    LeBlanc, A., Schneider, V., Shackelford, L., West, S., Oganov, V., Bakulin, A., Voronin, L.: Bone mineral and lean tissue loss after long duration space flight. J. Musculoskelet. Neuronal Interact. 1(2), 157–60 (2000)

    Google Scholar 

  4. 4.

    Ruggiu, A., Cancedda, R.: Bone mechanobiology, gravity and tissue engineering: effects and insights. J. Tissue Eng. Regen. Med. 9(12), 1339–1351 (2015)

    Article  Google Scholar 

  5. 5.

    Amin, S.: Mechanical factors and bone health: effects of weightlessness and neurologic injury. Curr. Rheumatol. Rep. 12(3), 170–176 (2010)

    Article  Google Scholar 

  6. 6.

    LeBlanc, A., Schneider, V., Krebs, J., Evans, H., Jhingran, S., Johnson, P.: Spinal bone mineral after 5 weeks of bed rest. Calcif. Tissue Int. 41(5), 259–261 (1987)

    Article  Google Scholar 

  7. 7.

    Zerwekh, J.E., Ruml, L.A., Gottschalk, F., Pak, C.Y.: The effects of twelve weeks of bed rest on bone histology, biochemical markers of bone turnover, and calcium homeostasis in eleven normal subjects. J. Bone Min. Res. 13(10), 1594–1601 (1998)

    Article  Google Scholar 

  8. 8.

    Leblanc, A.D., Schneider, V.S., Evans, H.J., Engelbretson, D.A., Krebs, J.M.: Bone mineral loss and recovery after 17 weeks of bed rest. J. Bone Min. Res. 5(8), 843–850 (1990)

    Article  Google Scholar 

  9. 9.

    Ramanchandran, R.: Hierarchy of bone structure. Report, College of Engineering and Applied Science, Cincinnati University College, (2006). http://www.eng.uc.edu/~beaucag/Classes/MorphologyofComplexMaterials/Hierarchy_of_Bone_Structure.pdf. Accessed Jan 2019

  10. 10.

    Lang, T.F., Leblanc, A.D., Evans, H.J., Lu, Y.: Adaptation of the proximal femur to skeletal reloading after long-duration spaceflight. J. Bone Min. Res. 21(8), 1224–1230 (2006)

    Article  Google Scholar 

  11. 11.

    Hardy, R., Cooper, M.: Bone loss in inflammatory disorders. J. Endocrinol. 201(3), 309–320 (2009)

    Article  Google Scholar 

  12. 12.

    Kumar, G.: Orban’s Oral Histology and Embryology. Elsevier Health Sciences, Amsterdam (2014)

    Google Scholar 

  13. 13.

    Veni, M.A.C., Rajathi, P.: Interaction between bone cells in bone remodelling. J. Acad. Dental Educ. 2, 1–6 (2017)

    Article  Google Scholar 

  14. 14.

    Florencio-Silva, R., Sasso, G.R.d.S., Sasso-Cerri, E., Simões, M.J., Cerri, P.S.: Biology of bone tissue: structure, function, and factors that influence bone cells. BioMed. Res. Int. 2015, 421746 (2015)

  15. 15.

    Sugawara, Y., Kamioka, H., Honjo, T., Tezuka, K.-I., Takano-Yamamoto, T.: Three-dimensional reconstruction of chick calvarial osteocytes and their cell processes using confocal microscopy. Bone 36(5), 877–883 (2005)

    Article  Google Scholar 

  16. 16.

    Hadjidakis, D.J., Androulakis, I.I.: Bone remodeling. Annals New York Acad. Sci. 1092(1), 385–396 (2006)

    ADS  Article  Google Scholar 

  17. 17.

    Klein-Nulend, J., Bakker, A.D., Bacabac, R.G., Vatsa, A., Weinbaum, S.: Mechanosensation and transduction in osteocytes. Bone 54(2), 182–190 (2013)

    Article  Google Scholar 

  18. 18.

    Wang, Q., Seeman, E.: Skeletal growth and peak bone strength. In: Rosen, C.J. (ed.) Primer on the Metabolic Bone Diseases and Disorders of Mineral Metabolism. Wiley (2013). https://doi.org/10.1002/9781118453926.ch16

    Google Scholar 

  19. 19.

    Thudium, C.S.: Development of novel models for studying osteoclasts. In: Division of Molecular Medicine and Gene Therapy, Lund University (2014)

  20. 20.

    Wolff, J.: Das Gesetz der transformation der Knochen Hirschwald. Mit vier Nachworten und historischen Dokumenten (1892)

  21. 21.

    Carter, D.R.: Mechanical loading histories and cortical bone remodeling. Calcif. Tissue Int. 36(1), S19–S24 (1984)

    MathSciNet  Article  Google Scholar 

  22. 22.

    Carter, D., Orr, T., Fyhrie, D.P.: Relationships between loading history and femoral cancellous bone architecture. J. Biomech. 22(3), 231–244 (1989)

    Article  Google Scholar 

  23. 23.

    Huiskes, R., Weinans, H., Grootenboer, H., Dalstra, M., Fudala, B., Slooff, T.: Adaptive bone-remodeling theory applied to prosthetic-design analysis. J. Biomech. 20(11–12), 1135–1150 (1987)

    Article  Google Scholar 

  24. 24.

    Frost, H.M.: Bone "mass" and the "mechanostat": a proposal. Anat. Rec. 219(1), 1–9 (1987)

    Article  Google Scholar 

  25. 25.

    Hegedus, D., Cowin, S.: Bone remodeling II: small strain adaptive elasticity. J. Elast. 6(4), 337–352 (1976)

    MathSciNet  MATH  Article  Google Scholar 

  26. 26.

    Burr, D.B., Martin, R.B., Schaffler, M.B., Radin, E.L.: Bone remodeling in response to in vivo fatigue microdamage. J. Biomech. 18(3), 189–200 (1985)

    Article  Google Scholar 

  27. 27.

    Weinans, H., Huiskes, R., Grootenboer, H.: The behavior of adaptive bone-remodeling simulation models. J. Biomech. 25(12), 1425–1441 (1992)

    Article  Google Scholar 

  28. 28.

    Mullender, M., Huiskes, R., Weinans, H.: A physiological approach to the simulation of bone remodeling as a self-organizational control process. J. Biomech. 27(11), 1389–1394 (1994)

    Article  Google Scholar 

  29. 29.

    Lekszycki, T.: Modelling of bone adaptation based on an optimal response hypothesis. Meccanica 37(4–5), 343–354 (2002)

    MathSciNet  MATH  Article  Google Scholar 

  30. 30.

    Tovar, A.: Bone remodeling as a hybrid cellular automaton optimization process. PhD Thesis, University Notre Dame, Indiana (2004)

  31. 31.

    Ruimerman, R., Hilbers, P., Van Rietbergen, B., Huiskes, R.: A theoretical framework for strain-related trabecular bone maintenance and adaptation. J. Biomech. 38(4), 931–941 (2005)

    Article  Google Scholar 

  32. 32.

    Lekszycki, T.: Functional adaptation of bone as an optimal control problem. J. Theor. Appl. Mech. 43(3), 555–574 (2005)

    Google Scholar 

  33. 33.

    Pivonka, P., Zimak, J., Smith, D.W., Gardiner, B.S., Dunstan, C.R., Sims, N.A., Martin, T.J., Mundy, G.R.: Model structure and control of bone remodeling: a theoretical study. Bone 43(2), 249–263 (2008)

    Article  Google Scholar 

  34. 34.

    Hart, R.: Bone modeling and remodeling: theories and computation. Bone Mech. Handb. 1, 31.1–31.42 (2001)

    Google Scholar 

  35. 35.

    Lemaire, T., Naili, S., Sansalone, V.: Multiphysical modelling of fluid transport through osteo-articular media. Anais da Academia Brasileira de Ciências 82(1), 127–144 (2010)

    MATH  Article  Google Scholar 

  36. 36.

    Lemaire, T., Capiez-Lernout, E., Kaiser, J., Naili, S., Sansalone, V.: What is the importance of multiphysical phenomena in bone remodelling signals expression? A multiscale perspective. J. Mech. Behav. Biomed. Mater. 4(6), 909–920 (2011)

    Article  Google Scholar 

  37. 37.

    Sansalone, V., Kaiser, J., Naili, S., Lemaire, T.: Interstitial fluid flow within bone canaliculi and electro-chemo-mechanical features of the canalicular milieu. Biomech. Model. Mechanobiol. 12(3), 533–553 (2013)

    Article  Google Scholar 

  38. 38.

    Sansalone, V., Gagliardi, D., Desceliers, C., Haiat, G., Naili, S.: On the uncertainty propagation in multiscale modeling of cortical bone elasticity. Comput. Methods Biomech. Biomed. Eng. 18(sup1), 2054–2055 (2015)

    Article  Google Scholar 

  39. 39.

    Lemaire, T., Kaiser, J., Naili, S., Sansalone, V.: Three-scale multiphysics modeling of transport phenomena within cortical bone. Math. Probl. Eng. 2015, 1–10 (2015)

    MathSciNet  MATH  Article  Google Scholar 

  40. 40.

    Madeo, A., Lekszycki, T.: A continuum model for the bio-mechanical interactions between living tissue and bio-resorbable graft after bone reconstructive surgery. Comptes Rendus Mécanique 339(10), 625–640 (2011)

    ADS  Article  Google Scholar 

  41. 41.

    Lekszycki, T., Dell’Isola, F.: A mixture model with evolving mass densities for describing synthesis and resorption phenomena in bones reconstructed with bio-resorbable materials. ZAMM J. Appl. Math. 92(6), 426–444 (2012)

    MathSciNet  MATH  Article  Google Scholar 

  42. 42.

    Madeo, A., George, D., Lekszycki, T., Nierenberger, M., Rémond, Y.: A second gradient continuum model accounting for some effects of micro-structure on reconstructed bone remodelling. Comptes Rendus Mécanique 340(8), 575–589 (2012)

    ADS  Article  Google Scholar 

  43. 43.

    Andreaus, U., Giorgio, I., Lekszycki, T.: A 2-D continuum model of a mixture of bone tissue and bio-resorbable material for simulating mass density redistribution under load slowly variable in time. ZAMM J. Appl. Math. Mech. Z. für Angew. Math. Mech. 94(12), 978–1000 (2014)

    MathSciNet  MATH  Article  Google Scholar 

  44. 44.

    Scala, I., Spingarn, C., Rémond, Y., Madeo, A., George, D.: Mechanically-driven bone remodeling simulation: application to LIPUS treated rat calvarial defects. Math. Mech. Solids 22(10), 1976–1988 (2017)

    MathSciNet  MATH  Article  Google Scholar 

  45. 45.

    Giorgio, I., Andreaus, U., Scerrato, D., Dell’Isola, F.: A visco-poroelastic model of functional adaptation in bones reconstructed with bio-resorbable materials. Biomech. Model. Mechanobiol. 15(5), 1325–1343 (2016)

    Article  Google Scholar 

  46. 46.

    Giorgio, I., Andreaus, U., Dell’Isola, F., Lekszycki, T.: Viscous second gradient porous materials for bones reconstructed with bio-resorbable grafts. Extrem. Mech. Lett. 13, 141–147 (2017)

    Article  Google Scholar 

  47. 47.

    Dell’Isola, F., Andreaus, U., Placidi, L.J.M., Solids, M.O.: At the origins and in the vanguard of peridynamics, non-local and higher-gradient continuum mechanics: an underestimated and still topical contribution of Gabrio Piola. Math. Mech. Solids 20(8), 887–928 (2015)

    MathSciNet  MATH  Article  Google Scholar 

  48. 48.

    Abali, B.E., Müller, W.H., Dell’Isola, F.: Theory and computation of higher gradient elasticity theories based on action principles. Arch. Appl. Mech. 87(9), 1495–1510 (2017)

    ADS  Article  Google Scholar 

  49. 49.

    Dell’Isola, F., Corte, A.D., Giorgio, I.J.M., Solids, M.O.: Higher-gradient continua: the legacy of Piola, Mindlin, Sedov and Toupin and some future research perspectives. Math. Mech. Solids 22(4), 852–872 (2017)

    MathSciNet  MATH  Article  Google Scholar 

  50. 50.

    Andreaus, U., Colloca, M., Iacoviello, D.: Optimal bone density distributions: numerical analysis of the osteocyte spatial influence in bone remodeling. Comput. Methods Progr. Biomed. 113(1), 80–91 (2014)

    Article  Google Scholar 

  51. 51.

    Bednarczyk, E., Lekszycki, T.: A novel mathematical model for growth of capillaries and nutrient supply with application to prediction of osteophyte onset. Z. für Angew. Math. Phys. 67(4), 94 (2016)

    MathSciNet  MATH  Article  Google Scholar 

  52. 52.

    Lu, Y., Lekszycki, T.: A novel coupled system of non-local integro-differential equations modelling Young’s modulus evolution, nutrients’ supply and consumption during bone fracture healing. Z. für Angew. Math. Phys. 67(5), 111 (2016)

    MathSciNet  MATH  Article  Google Scholar 

  53. 53.

    Allena, R., Maini, P.: Reaction-diffusion finite element model of lateral line primordium migration to explore cell leadership. Bull. Math. Biol. 76(12), 3028–3050 (2014)

    MATH  Article  Google Scholar 

  54. 54.

    George, D., Allena, R., Rémond, Y.: Mechanobiological stimuli for bone remodeling: mechanical energy, cell nutriments and mobility. Comput. Methods Biomech. Biomed. Eng. 20(sup1), 91–92l (2017)

    Article  Google Scholar 

  55. 55.

    George, D., Allena, R., Rémond, Y.: A multiphysics stimulus for continuum mechanics bone remodeling. Math. Mech. Complex Syst. 6(4), 307–319 (2018)

    MathSciNet  MATH  Article  Google Scholar 

  56. 56.

    George, D., Allena, R., Rémond, Y.: Integrating molecular and cellular kinetics into a coupled continuum mechanobiological stimulus for bone reconstruction. Contin. Mech. Thermodyn. 31(3), 725–740 (2019)

    ADS  MathSciNet  Article  Google Scholar 

  57. 57.

    Rémond, Y., Ahzi, S., Baniassadi, M., Garmestani, H.: Applied RVE Reconstruction and Homogenization of Heterogeneous Materials. Wiley, Hoboken (2016)

    Google Scholar 

  58. 58.

    Hasanabadi, A., Baniassadi, M., Abrinia, K., Safdari, M., Garmestani, H.: 3D microstructural reconstruction of heterogeneous materials from 2D cross sections: a modified phase-recovery algorithm. Comput. Mater. Sci. 111, 107–115 (2016)

    Article  Google Scholar 

  59. 59.

    Hasanabadi, A., Baniassadi, M., Abrinia, K., Safdari, M., Garmestani, H.: Efficient three-phase reconstruction of heterogeneous material from 2D cross-sections via phase-recovery algorithm. J. Microsc. 264(3), 384–393 (2016)

    Article  Google Scholar 

  60. 60.

    Sheidaei, A., Kazempour, M., Hasanabadi, A., Nosouhi, F., Pithioux, M., Baniassadi, M., Rémond, Y., George, D.: Influence of bone microstructure distribution on developed mechanical energy for bone remodeling using a statistical reconstruction method. Math. Mech. Solids (2019). https://doi.org/10.1177/1081286519828418

    MathSciNet  Article  Google Scholar 

  61. 61.

    Sigmund, O.: On the Optimality of Bone Microstructure. Springer, Dordrecht (2002)

    Google Scholar 

  62. 62.

    Rodrigues, H., Jacobs, C., Guedes, J.M., Bendsøe, M.P.: Global and Local Material Optimization Models Applied to Anisotropic Bone Adaptation. Springer, Dordrecht (2002)

    Google Scholar 

  63. 63.

    Huiskes, R., Ruimerman, R., Van Lenthe, G.H., Janssen, J.D.: Effects of mechanical forces on maintenance and adaptation of form in trabecular bone. Nature 405(6787), 704 (2000)

    ADS  Article  Google Scholar 

  64. 64.

    Nowak, M.: Structural optimization system based on trabecular bone surface adaptation. Struct. Multidiscip. Optim. 32(3), 241–249 (2006)

    Article  Google Scholar 

  65. 65.

    Jang, I.G., Kim, I.Y.: Computational study of Wolff’s law with trabecular architecture in the human proximal femur using topology optimization. J. Biomech. 41(11), 2353–2361 (2008)

    Article  Google Scholar 

  66. 66.

    Goda, I., Assidi, M., Ganghoffer, J.-F.: A 3D elastic micropolar model of vertebral trabecular bone from lattice homogenization of the bone microstructure. Biomech. Model. Mechanobiol. 13(1), 53–83 (2014)

    Article  Google Scholar 

  67. 67.

    Goda, I., Ganghoffer, J.-F., Czarnecki, S., Wawruch, P., Lewiński, T.: Optimal internal architectures of femoral bone based on relaxation by homogenization and isotropic material design. Mech. Res. Commun. 76, 64–71 (2016)

    Article  Google Scholar 

  68. 68.

    Lee, Y.H., Kim, Y., Kim, J.J., Jang, I.G.: Homeostasis-based aging model for trabecular changes and its correlation with age-matched bone mineral densities and radiographs. Eur. J. Radiol. 84(11), 2261–2268 (2015)

    Article  Google Scholar 

  69. 69.

    Spingarn, C., Wagner, D., Rémond, Y., George, D.: Multiphysics of bone remodeling: a 2D mesoscale activation simulation. Bio-med. Mat. Eng. 28(s1), S153–S158 (2017)

    Google Scholar 

  70. 70.

    Allena, R., Cluzel, C.: Heterogeneous directions of orthotropy in three-dimensional structures: finite element description based on diffusion equations. Math. Mech. Complex Syst. 6(4), 339–351 (2018)

    MathSciNet  MATH  Article  Google Scholar 

  71. 71.

    Cluzel, C., Allena, R.: A general method for the determination of the local orthotropic directions of heterogeneous materials: application to bone structures using \(\upmu \)CT images. Math. Mech. Complex Syst. 6(4), 353–367 (2018)

    MathSciNet  MATH  Article  Google Scholar 

  72. 72.

    Goda, I., Ganghoffer, J.-F., Maurice, G.: Combined bone internal and external remodeling based on Eshelby stress. Int. J. Solids Struct. 94, 138–157 (2016)

    Article  Google Scholar 

  73. 73.

    Klibanski, A., Adams-Campbell, L., Bassford, T., Blair, S.N., Boden, S.D., Dickersin, K., Gifford, D.R., Glasse, L., Goldring, S.R., Hruska, K.: Osteoporosis prevention, diagnosis, and therapy. J. Am. Med. Assoc. 285(6), 785–795 (2001)

    Article  Google Scholar 

  74. 74.

    Pennline, J.A., Mulugeta, L.: Mapping Bone Mineral Density Obtained by Quantitative Computed Tomography to Bone Volume Fraction. NASA, Washington, D.C (2017)

    Google Scholar 

  75. 75.

    Qin, Y.-X.: Challenges to the musculoskeleton during a journey to Mars: assessment and counter measures. J. Cosmol. 12, 3778–3780 (2010)

    Google Scholar 

  76. 76.

    Liu, Y.L., Hsu, J.T., Shih, T.Y., Luzhbin, D., Tu, C.Y., Wu, I.: Quantification of volumetric bone mineral density of proximal femurs using a two-compartment model and computed tomography images. BioMed. Res. Int. 2018, 1–8 (2018)

    Google Scholar 

  77. 77.

    Greco, L., Cuomo, M.: On the force density method for slack cable nets. Int. J. Solids Struct. 49(13), 1526–40 (2012). Jun 15

    Article  Google Scholar 

  78. 78.

    Eberhart, R.C., Shi, Y., Kennedy, J.: Swarm Intelligence. Elsevier, Amsterdam (2001)

    Google Scholar 

  79. 79.

    Hildebrand, T., Rüegsegger, P.: A new method for the model-independent assessment of thickness in three-dimensional images. J. Microsc. 185(1), 67–75 (1997)

    Article  Google Scholar 

  80. 80.

    Anderson, I.A., Carman, J.B.: How do changes to plate thickness, length, and face-connectivity affect femoral cancellous bone’s density and surface area? An investigation using regular cellular models. J. Biomech. 33(3), 327–335 (2000)

    Article  Google Scholar 

  81. 81.

    Abdoul-Anziz, H., Seppecher, P.: Strain gradient and generalized continua obtained by homogenizing frame lattices. Math. Mech. Complex Syst. 6(3), 213–50 (2018). Jul 26

    MathSciNet  MATH  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to M. Baniassadi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Communicated by Francesco dell’Isola.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Bagherian, A., Baghani, M., George, D. et al. A novel numerical model for the prediction of patient-dependent bone density loss in microgravity based on micro-CT images. Continuum Mech. Thermodyn. 32, 927–943 (2020). https://doi.org/10.1007/s00161-019-00798-8

Download citation

Keywords

  • Bone density loss
  • Microgravity
  • Degradation
  • Microstructure
  • Finite element
  • Optimization
  • Micro-CT