Reflection of plane waves in thermoelastic microstructured materials under the influence of gravitation

Abstract

This paper presents an analysis of wave propagation in a microstretch elastic medium in the context of the Green–Naghdi (GN) theory. Moreover, the dissipation and the influence of gravity on reflected waves have also been investigated. In the present article, five reflected waves propagate into the medium for any incident wave. The problem is solved numerically, and the amplitude ratios are graphically represented allowing for a comparison between the simple GN theory and the case in which one considers the effect of gravity on waves.

This is a preview of subscription content, log in to check access.

References

  1. 1.

    Green, A.E., Naghdi, P.M.: A general theory of an elastic–plastic continuum. Arch. Ration. Mech. Anal. 18(4), 251–281 (1965)

    MathSciNet  MATH  Article  Google Scholar 

  2. 2.

    Battista, A., Della Corte, A., dell’Isola, F., Seppecher, P.: Large deformations of 1D microstructured systems modeled as generalized Timoshenko beams. Zeitschrift für angewandte Mathematik und Physik 69(3), 52 (2018)

    ADS  MathSciNet  MATH  Article  Google Scholar 

  3. 3.

    Rosi, G., Placidi, L., dell’Isola, F.: "Fast" and "slow" pressure waves electrically induced by nonlinear coupling in Biot-type porous medium saturated by a nematic liquid crystal. Zeitschrift für angewandte Mathematik und Physik 68(2), 51 (2017)

    ADS  MathSciNet  MATH  Article  Google Scholar 

  4. 4.

    Andreaus, U., Spagnuolo, M., Lekszycki, T., Eugster, S.R.: A Ritz approach for the static analysis of planar pantographic structures modeled with nonlinear Euler–Bernoulli beams. Contin. Mech. Thermodyn. 30, 1103–1123 (2018)

    ADS  MathSciNet  MATH  Article  Google Scholar 

  5. 5.

    Spagnuolo, M., Barcz, K., Pfaff, A., dell’Isola, F., Franciosi, P.: Qualitative pivot damage analysis in aluminum printed pantographic sheets: numerics and experiments. Mech. Res. Commun. 83, 47–52 (2017)

    Article  Google Scholar 

  6. 6.

    dell’Isola, F., Seppecher, P., Alibert, J. J., Lekszycki, T., Grygoruk, R., Pawlikowski, M., Gołaszewski, M.: Pantographic metamaterials: an example of mathematically driven design and of its technological challenges. Contin. Mech. Thermodyn. 1–34 (2018)

  7. 7.

    Placidi, L., Barchiesi, E., Turco, E., Rizzi, N.L.: A review on 2D models for the description of pantographic fabrics. Zeitschrift für angewandte Mathematik und Physik 67(5), 121 (2016)

    ADS  MathSciNet  MATH  Article  Google Scholar 

  8. 8.

    Barchiesi, E., Placidi, L.: A review on models for the 3D statics and 2D dynamics of pantographic fabrics. In: Wave Dynamics and Composite Mechanics for Microstructured Materials and Metamaterials, pp. 239–258. Springer, Singapore (2017)

    Google Scholar 

  9. 9.

    Craster, R.V., Guennau, S. (eds.): Acoustic Metamaterials: Negative Refraction, Imaging, Lensing and Cloaking. Springer, New York (2012)

    Google Scholar 

  10. 10.

    di Cosmo, F., Laudato, M., Spagnuolo, M.: Acoustic metamaterials based on local resonances: homogenization, optimization and applications. In: Generalized Models and Nonclassical Approaches in Complex Materials vol. 1, pp. 247–274. Springer, Cham (2018)

  11. 11.

    Deymier, P.A. (ed.): Acoustic Metamaterials and Phononic Crystals. Springer, New York (2013)

    Google Scholar 

  12. 12.

    Liu, Z., Zhang, X., Mao, Y., Zhu, Y.Y., Yang, Z., Chan, C.T., Sheng, P.: Locally resonant sonic materials. Science 289(5485), 1734–1736 (2000)

    ADS  Article  Google Scholar 

  13. 13.

    Barchiesi, E., Spagnuolo, M., Placidi, L.: Mechanical metamaterials: a state of the art. Math. Mech. Solids (2018). https://doi.org/10.1177/1081286517735695

    MathSciNet  MATH  Article  Google Scholar 

  14. 14.

    Barchiesi, E., Laudato, M., Di Cosmo, F.: Wave dispersion in non-linear pantographic beams. Mech. Res. Commun. 94, 128–132 (2018)

    Article  Google Scholar 

  15. 15.

    Laudato, M., Manzari, L., Barchiesi, E., Di Cosmo, F., Göransson, P.: First experimental observation of the dynamical behavior of a pantographic metamaterial. Mech. Res. Commun. 94, 125–127 (2018)

    Article  Google Scholar 

  16. 16.

    Rosi, G., Giorgio, I., Eremeyev, V.A.: Propagation of linear compression waves through plane interfacial layers and mass adsorption in second gradient fluids. ZAMM - Journal of Applied Mathematics and Mechanics/Zeitschrift für Angewandte Mathematik und Mechanik 93(12), 914–927 (2013)

    ADS  MathSciNet  Article  Google Scholar 

  17. 17.

    Abo-Dahab, S.M., Abd-Alla, A.M., Gohaly, A.: On reflection of plane elastic waves problem at a free surface under initial stress, magnetic field, and temperature field. J. Comput. Theor. Nanosci. 11, 2171–2180 (2014)

    Article  Google Scholar 

  18. 18.

    Kumar, R., Rupender, A.: Reflection at the free surface of magneto–thermo–microstretch elastic solid. Bull. Pol. Acad. Tech. 56, 263–271 (2008)

    Google Scholar 

  19. 19.

    Tomar, S.K., Khurana, A.: Reflection and transmission of elastic waves from a plane interface between two thermo-microstretch solid half-spaces. Int. J. Appl. Math. Mech. 5, 48–68 (2009)

    Google Scholar 

  20. 20.

    Kumar, R., Garg, S.K., Ahuja, S.: A Study of plane wave and fundamental solution in the theory of an electro-microstretch generalized thermoelastic solid. Mater. Phys. Mech. 16, 34–54 (2013)

    Google Scholar 

  21. 21.

    Singh, D., Kumar, A., Kumar, R.: A problem in microstretch thermoelastic diffusive medium. Int. J. Mater. Comput. Phys. Quant. Eng. 8, 6–9 (2014)

    Google Scholar 

  22. 22.

    Othman, M.I.A., Abo-Dahab, S.M., Lotfy, Kh: Gravitational effect and initial stress on generalized magneto–thermo–microstretch elastic solid for different theories. Appl. Math. Comput. 230, 597–615 (2014)

    MathSciNet  MATH  Google Scholar 

  23. 23.

    Eringen, A.C.: Microcontinuum Field Theories I: Foundation and Solids. Springer, Newyork (1999)

    Google Scholar 

  24. 24.

    Eringen, A.C.: Continuum theory of micromorphic electromagnetic thermoelastic solids. Int. J. Eng. Sci. 41, 653–665 (2003)

    MathSciNet  MATH  Article  Google Scholar 

  25. 25.

    Eringen, A.C.: Electromagnetic theory of microstretch elasticity and bone modeling. Int. J. Eng. Sci. 42, 231–242 (2004)

    MathSciNet  MATH  Article  Google Scholar 

  26. 26.

    Lee, J.D., Chen, Y., Eskandarian, A.: A micromorphic electromagnetic theory. Int. J. Solid Struct. 41, 2099–2110 (2004)

    MATH  Article  Google Scholar 

  27. 27.

    Iesan, D.: On the microstretch piezoelectricity. Int. J. Eng. Sci. 44, 819–829 (2006)

    MathSciNet  MATH  Article  Google Scholar 

  28. 28.

    Iesan, D., Quintanilla, R.: Some theorems in the theory of microstretch thermopiezoelectricity. Int. J. Eng. Sci. 45, 1–16 (2007)

    MathSciNet  MATH  Article  Google Scholar 

  29. 29.

    Iesan, D.: On the bending of piezoelectric plates with microstructure. Acta Mech. 198, 191–208 (2008)

    MATH  Article  Google Scholar 

  30. 30.

    Iesan, D.: Thermopiezoelectricity without energy dissipation. Proc. R. Soc. A 464, 631–657 (2008)

    ADS  MathSciNet  MATH  Article  Google Scholar 

  31. 31.

    Abd-Alla, A.M., Abo-Dahab, S.M., Bayones, F.S.: Wave propagation in fibre-reinforced anisotropic thermoelastic medium subjected to gravity field. Struct. Eng. Mech. 53, 76–90 (2015)

    Article  Google Scholar 

  32. 32.

    Abd-Alla, A.M., Nofal, T.A., Abo-Dahab, S.M., Al-Mullise, A.: Effect of gravity field on fibre-reinforced generalized thermoelastic media. J. Comput. Theor. Nanosci. 11, 2399–2410 (2014)

    Article  Google Scholar 

  33. 33.

    Abo-Dahab, S.M.: A new features on S-waves propagation in a non-homogeneous anisotropic incompressible mediumunder influences of gravity field and initial stress with and without electromagnetic field and rotation. Mech. Adv. Mater. Struct. 24(14), 1145–1158 (2017)

    Article  Google Scholar 

  34. 34.

    Othman, M.I.A., Said, S.: The effect of rotation on a fiber-reinforced medium under generalized magneto-thermoelasticity with internal heat source. Mech. Adv. Mater. Struct. 22, 168–183 (2013)

    Article  Google Scholar 

  35. 35.

    Abd-Alla, A.M., Mahmoud, S.R., Abo-Dahab, S.M.: On problem of transient coupled thermoelasticity of an annular fin. Meccanica 47, 1295–1306 (2012)

    MathSciNet  MATH  Article  Google Scholar 

  36. 36.

    Abd-Alla, A.N., Yahia, A.A., Abo-Dahab, S.M.: On the reflection of the generalized magneto–thermo–viscoelastic plane waves. Chaos Solitons Fract. 16(2), 211–231 (2003)

    ADS  MathSciNet  MATH  Article  Google Scholar 

  37. 37.

    Othman, M.I.A., Atwa, S.Y., Jahangir, A., Khan, A.: The effect of gravity on plane waves in a rotating thermo-microstretch elastic solid for a mode-I crack with energy dissipation. Mech. Adv. Mater. Struct. 22, 945–955 (2015)

    Article  Google Scholar 

  38. 38.

    Othman, M.I.A.: State space approach to the generalized thermoelastic problem with temperature-dependent elastic moduli and internal heat sources. J. Appl. Mech. Tech. Phys. 52, 644–654 (2011)

    ADS  MathSciNet  MATH  Article  Google Scholar 

  39. 39.

    Othman, M.I.A., Song, Y.Q.: Effect of the thermal relaxation and magnetic field on generalized micropolar thermoelasticity. J. Appl. Mech. Tech. Phys. 57, 108–116 (2016)

    ADS  MathSciNet  MATH  Article  Google Scholar 

  40. 40.

    Abd-Alla, A.N., Al-Sheikh, F.A., Al-Hossain, A.Y.: The reflection phenomena of quasi-vertical transverse waves in piezoelectric medium under initial stresses. Meccanica 47(3), 731–744 (2012)

    MathSciNet  MATH  Article  Google Scholar 

  41. 41.

    Abd-alla, A.N., Al-Hossain, A.Y., Farhoud, F.A., Ibrahim, M.: The mathematical model of reflection and refraction of plane quasi-vertical transverse waves at interface nano-composite smart material. J. Comput. Theor. Nanosci. 8(7), 1193–1202 (2011)

    Article  Google Scholar 

  42. 42.

    Altenbach, H., Eremeyev, V., Lebedev, L., Rendón, L.: Acceleration waves and ellipticity in thermoelastic micropolar media. Arch. Appl. Mech. 80(3), 217–227 (2010)

    ADS  MATH  Article  Google Scholar 

  43. 43.

    Eremeyev, V.A., Rosi, G., Naili, S.: Surface/interfacial anti-plane waves in solids with surface energy. Mech. Res. Commun. 74, 8–13 (2016)

    Article  Google Scholar 

  44. 44.

    Eremeyev, V. A.: Acceleration waves in micropolar elastic media. In: Doklady Physics, vol. 50, No. 4, pp. 204–206. Nauka/Interperiodica, April 2005

    ADS  Article  Google Scholar 

  45. 45.

    Placidi, L., Hutter, K.: An anisotropic flow law for incompressible polycrystalline materials. Z. Angew. Math. Phys. 57(1), 160–181 (2005)

    MathSciNet  MATH  Article  Google Scholar 

  46. 46.

    Placidi, L., Hutter, K.: Thermodynamics of polycrystalline materials treated by the theory of mixtures with continuous diversity. Contin. Mech. Thermodyn. 17(6), 409–451 (2006)

    ADS  MathSciNet  MATH  Article  Google Scholar 

  47. 47.

    Quiligotti, S., Maugin, G.A., dell’Isola, F.: Wave motions in unbounded poroelastic solids infused with compressible fluids. Z. Angew. Math. Phys. 53(6), 1110–1138 (2002)

    MathSciNet  MATH  Article  Google Scholar 

  48. 48.

    Rousseau, M., Maugin, G.A.: Wave momentum in models of generalized continua. Wave Motion 50(3), 509–519 (2013)

    MathSciNet  MATH  Article  Google Scholar 

  49. 49.

    Abbas, I.A., Abd-alla, A.N., Othman, M.I.: Generalized magneto-thermoelasticity in a fiber-reinforced anisotropic half-space. Int. J. Thermophys. 32(5), 1071–1085 (2011)

    ADS  Article  Google Scholar 

  50. 50.

    Abbas, I.A., Alshaikh, F.: Analytical and computational solution of three-dimensional thermoelastic interactions in porous material with temperature-dependent properties. J. Comput. Theor. Nanosci. 14(8), 4021–4033 (2017)

    Article  Google Scholar 

  51. 51.

    Franciosi, P., Spagnuolo, M., Salman, O. U.: Mean Green operators of deformable fiber networks embedded in a compliant matrix and property estimates. Contin. Mech. Thermodyn. 1–32 (2018)

  52. 52.

    Franciosi, P.: A decomposition method for obtaining global mean Green operators of inclusions patterns. Application to parallel infinite beams in at least transversally isotropic media. Int. J. Solids Struct. 147, 1–19 (2018)

    Article  Google Scholar 

  53. 53.

    Giorgio, I., Scerrato, D.: Multi-scale concrete model with rate-dependent internal friction. Eur. J. Environ. Civ. Eng. 21(7–8), 821–839 (2017)

    Article  Google Scholar 

  54. 54.

    Della Corte, A., Battista, A., dell’Isola, F.: Referential description of the evolution of a 2D swarm of robots interacting with the closer neighbors: perspectives of continuum modeling via higher gradient continua. Int. J. Non-Linear Mech. 80, 209–220 (2016)

    ADS  Article  Google Scholar 

  55. 55.

    dell’Isola, F., Giorgio, I., Pawlikowski, M., Rizzi, N.: Large deformations of planar extensible beams and pantographic lattices: heuristic homogenization, experimental and numerical examples of equilibrium. Proc. Roy. Soc. Lond. Ser. A 472, 2185 (2016)

    Article  Google Scholar 

  56. 56.

    Placidi, L., Andreaus, U., Giorgio, I.: Identification of two-dimensional pantographic structure via a linear D4 orthotropic second gradient elastic model. J. Eng. Math. 103(1), 1–21 (2017)

    MathSciNet  MATH  Article  Google Scholar 

  57. 57.

    Placidi, L., Barchiesi, E., Della Corte, A.: Identification of two-dimensional pantographic structures with a linear D4 orthotropic second gradient elastic model accounting for external bulk double forces. In: Mathematical Modelling in Solid Mechanics, pp. 211–232. Springer, Singapore (2017)

    Google Scholar 

  58. 58.

    Spagnuolo, M., Andreaus, U.: A targeted review on large deformations of planar elastic beams: extensibility, distributed loads, buckling and post-buckling. Math. Mech. Solids (2018). https://doi.org/10.1177/1081286517737000

    MathSciNet  MATH  Article  Google Scholar 

  59. 59.

    Berezovski, A., Giorgio, I., Della Corte, A.: Interfaces in micromorphic materials: wave transmission and reflection with numerical simulations. Math. Mech. Solids 21(1), 37–51 (2016)

    MathSciNet  MATH  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Abo-el-nour N. Abd-alla.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Communicated by Francesco dell’Isola.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Abo-Dahab, S.M., Jahangir, A. & Abd-alla, A.N. Reflection of plane waves in thermoelastic microstructured materials under the influence of gravitation. Continuum Mech. Thermodyn. 32, 803–815 (2020). https://doi.org/10.1007/s00161-018-0739-2

Download citation

Keywords

  • Generalized thermoelasticity
  • Gravitational effect
  • Microstretch
  • Reflection