Skip to main content
Log in

Nonlocal and nonlinear contributions to the thermal and elastic high-frequency wave propagations at nanoscale

  • Original Article
  • Published:
Continuum Mechanics and Thermodynamics Aims and scope Submit manuscript

Abstract

We analyze the role played by nonlocal and nonlinear effects in the propagation of thermal and elastic high-frequency waves in nanosystems. The study is performed both in the case of a rigid body (i.e., for heat-pulse propagation) and in the case of a nonrigid body (i.e., for thermoelastic-pulse propagation). In the framework of extended irreversible thermodynamics, the compatibility of our theoretical models with second law is proved.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Reissland, J.A.: The Physics of Phonons. Wiley, London (1973)

    Google Scholar 

  2. Liboff, R.L.: Kinetic Theory (Classical, Quantum and Relativistic Description). Prentice Hall, Englewood Cliffs (1990)

    Google Scholar 

  3. Ziman, J.M.: Electrons and Phonons. Oxford University Press, Oxford (2001)

    Book  MATH  Google Scholar 

  4. Lebon, G., Jou, D., Casas-Vázquez, J.: Understanding Non-equilibrium Thermodynamics. Springer, Berlin (2008)

    Book  MATH  Google Scholar 

  5. Jou, D., Casas-Vázquez, J., Lebon, G.: Extended Irreversible Thermodynamics, Fourth revised edn. Springer, Berlin (2010)

    Book  MATH  Google Scholar 

  6. Marin, L.: Numerical solution of the Cauchy problem for steady-state heat transfer in two-dimensional functionally graded materials. Int. J. Solids Struct. 42, 4338–4351 (2005)

    Article  MATH  Google Scholar 

  7. Burlayenko, V., Altenbach, H., Sadowski, T., Dimitrova, S., Bhaskar, A.: Modelling functionally graded materials in heat transfer and thermal stress analysis by means of graded finite elements. Appl. Math. Modell. 45, 422–438 (2017)

    Article  MathSciNet  Google Scholar 

  8. Ciarletta, A.S.M., Tibullo, V.: Heat-pulse propagation in functionally graded thin layers. Int. J. Eng. Sci. 119, 78–92 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  9. Lee, S., Broido, D., Esfarjani, K., Chen, G.: Hydrodynamic phonon transport in suspended graphene. Nat. Commun. 6, 6290 (2015)

    Article  ADS  Google Scholar 

  10. Fryer, M.J., Struchtrup, H.: Moment model and boundary conditions for energy transport in the phonon gas. Contin. Mech. Thermodyn. 26, 593–618 (2014)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  11. Sellitto, A., Carlomagno, I., Jou, D.: Two-dimensional phonon hydrodynamics in narrow strips. Proc. R. Soc. A 471, 20150376 (2015)

  12. Zhang, Z.M.: Nano/Microscale Heat Transfer. McGraw-Hill, New York (2007)

    Google Scholar 

  13. Tzou, D.Y.: Macro- to Microscale Heat Transfer: The Lagging Behaviour, 2nd edn. Wiley, London (2014)

    Google Scholar 

  14. Lebon, G.: Heat conduction at micro and nanoscales: a review through the prism of extended irreversible thermodynamics. J. Non-equilib. Thermodyn. 39, 35–59 (2014)

    Article  ADS  Google Scholar 

  15. Sellitto, A., Cimmelli, V.A., Jou, D.: Mesoscopic Theories of Heat Transport in Nanosystems. SEMA-SIMAI Springer Series, vol. 6. Springer, New York (2016)

    MATH  Google Scholar 

  16. Cahill, D.C., Ford, W.K., Goodson, K.E., Mahan, G.D., Majumdar, A., Maris, H.J., Merlin, R., Phillpot, S.R.: Nanoscale thermal transport. J. Appl. Phys. 93(2), 793–818 (2003)

    Article  ADS  Google Scholar 

  17. Cahill, D.G., Braun, P.V., Chen, G., Clarke, D.R., Fan, S., Goodson, K.E., Keblinski, P., King, W.P., Mahan, G.D., Majumdar, A., Maris, H.J., Phillpot, S.R., Pop, E., Shi, L.: Nanoscale thermal transport. II. 2003–2012. Appl. Phys. Rev. 1(1), 011305 (2014)

    Article  ADS  Google Scholar 

  18. Guyer, R.A., Krumhansl, J.A.: Solution of the linearized phonon Boltzmann equation. Phys. Rev. 148, 766–778 (1966)

    Article  ADS  Google Scholar 

  19. Ván, P.: Weakly nonlocal irreversible thermodynamics—the Guyer–Krumhansl and the Cahn–Hilliard equations. Phys. Lett. A 290, 88–92 (2001)

    Article  ADS  MATH  Google Scholar 

  20. Kovács, R., Ván, P.: Generalized heat conduction in heat pulse experiments. Int. J. Heat Mass Transf. 83, 613–620 (2015)

    Article  Google Scholar 

  21. Luzzi, R., Vasconcellos, A.R., Casas-Vázquez, J., Jou, D.: Characterization and measurement of a nonequilibrium temperature-like variable in irreversible thermodynamics. Phys. A 234, 699–714 (1997)

    Article  Google Scholar 

  22. Jou, D., Cimmelli, V.A., Sellitto, A.: Nonequilibrium temperatures and second-sound propagation along nanowires and thin layers. Phys. Lett. A 373, 4386–4392 (2009)

    Article  ADS  MATH  Google Scholar 

  23. Jou, D., Restuccia, L.: Caloric and entropic temperatures in non-equilibrium steady states. Phys. A 460, 246–253 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  24. Cimmelli, V.A., Sellitto, A., Jou, D.: Nonequilibrium temperatures, heat waves, and nonlinear heat transport equations. Phys. Rev. B 81, 054301 (2010)

    Article  ADS  Google Scholar 

  25. Sellitto, A., Tibullo, V., Dong, Y.: Nonlinear heat-transport equation beyond fourier law: Application to heat-wave propagation in isotropic thin layers. Continuum Mech. Thermodyn. 29, 411–428 (2017)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  26. Jou, D., Sellitto, A., Alvarez, F.X.: Heat waves and phonon-wall collisions in nanowires. Proc. R. Soc. A 467, 2520–2533 (2011)

    Article  ADS  MathSciNet  Google Scholar 

  27. Vázquez, F., del Río, J.A.: Thermodynamic characterization of the diffusive transport to wave propagation transition in heat conducting thin films. J. Appl. Phys. 112, 123707 (2012)

    Article  ADS  Google Scholar 

  28. Tang, D.-S., Cao, B.-Y.: Ballistic thermal wave propagation along nanowires modeled using phonon Monte Carlo simulations. Appl. Therm. Eng. 117, 609–616 (2017)

    Article  Google Scholar 

  29. Cattaneo, C.: Sulla conduzione del calore. Atti Sem. Mat. Fis. Univ. Modena 3, 83–101 (1948)

    MathSciNet  MATH  Google Scholar 

  30. Müller, I., Ruggeri, T.: Rational Extended Thermodynamics, 2nd edn. Springer, New York (1998)

    Book  MATH  Google Scholar 

  31. Chandrasekharaiah, D.S.: Thermoelasticity with second sound: a review. Appl. Mech. Rev. 39, 355–376 (1986)

    Article  ADS  MATH  Google Scholar 

  32. Joseph, D.D., Preziosi, L.: Addendum to the paper "heat waves" [Rev. Mod. Phys. 61, 41 (1989)]. Rev. Mod. Phys. 62, 375–391 (1990)

    Article  ADS  Google Scholar 

  33. Dreyer, W., Struchtrup, H.: Heat pulse experiments revisited. Contin. Mech. Thermodyn. 5, 3–50 (1993)

    Article  ADS  MathSciNet  Google Scholar 

  34. Marin, E. (ed.): Thermal Wave Physics and Related Photo Thermal Techniques: Basic Principle and Recent Developments. Transworld Research, Trivandrum (2009)

    Google Scholar 

  35. Ignaczak, J., Ostoja-Starzewski, M.: Thermoelasticity with Finite Wave Speeds. Oxford Science Publications, Oxford (2010)

    MATH  Google Scholar 

  36. Straughan, B.: Heat Waves. Springer, Berlin (2011)

    Book  MATH  Google Scholar 

  37. Yu, Y.J., Tian, X.-G., Xiong, Q.-L.: Nonlocal thermoelasticity based on nonlocal heat conduction and nonlocal elasticity. Eur. J. Mech. A Solid 60, 238–253 (2016)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  38. Alam, M., Manoharan, M., Haque, M., Muratore, C., Voevodin, A.: Influence of strain on thermal conductivity of silicon nitride thin films. J. Micromech. Microeng. 22, 045001 (2012)

    Article  ADS  Google Scholar 

  39. Fan, D., Sigg, H., Spolenak, R., Ekinci, Y.: Strain and thermal conductivity in ultrathin suspended silicon nanowires. Phys. Rev. B 96, 115307 (2017)

    Article  ADS  Google Scholar 

  40. Ding, X., Salje, E.K.H.: Heat transport by phonons and the generation of heat by fast phonon processes in ferroelastic materials. AIP Adv. 5, 053604 (2015)

    Article  ADS  Google Scholar 

  41. Verhás, J.: On the entropy current. J. Non-equilib. Thermodyn. 8, 201–206 (1983)

    Article  ADS  Google Scholar 

  42. Sellitto, A., Cimmelli, V.A., Jou, D.: Entropy flux and anomalous axial heat transport at the nanoscale. Phys. Rev. B 87, 054302 (2013)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

A. S. acknowledges the University of Salerno for the financial supports under Grant No. 300393FRB17CIARL and Grant “Fondo per il finanziamento iniziale dell’attività di ricerca,” as well as the Italian “Agenzia Nazionale di Valutazione del sistema Universitario e della Ricerca” for the financial support under Grant “Fondo per il finanziamento delle attività base di ricerca.” Both authors thank the Italian “National Group of Mathematical Physics (GNFM-INdAM)” for supporting the research Project “Progetto Giovani 2018/Heat-pulse propagation in FGMs.”

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Sellitto.

Additional information

Communicated by Andreas Öchsner.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sellitto, A., Di Domenico, M. Nonlocal and nonlinear contributions to the thermal and elastic high-frequency wave propagations at nanoscale. Continuum Mech. Thermodyn. 31, 807–821 (2019). https://doi.org/10.1007/s00161-018-0738-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00161-018-0738-3

Keywords

Navigation