Skip to main content
Log in

Electromechanical coupling of Bleustein–Gulyaev wave propagation in rotating prestressed piezoelectric layered materials

  • Original Article
  • Published:
Continuum Mechanics and Thermodynamics Aims and scope Submit manuscript

Abstract

This work investigates the propagation of Bleustein–Gulyaev waves in a piezoelectric layered rotating prestressed half-space. The main solution consists in the obtained expressions for the phase velocity equation of the Bleustein–Gulyaev wave. The phase velocity is numerically calculated and graphically illustrated for the electric open and short cases for different thicknesses of the layer and wave. Numerical outcomes are produced in case of \(\hbox {LiNbO}_3 \).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bleustein, J.L.: A new surface wave in piezoelectric materials. Appl. Phys. Lett. 13, 412–413 (1968)

    Article  ADS  Google Scholar 

  2. Gulyaev, Y.V.: Electroacoustic surface waves in solids. Sov. Phys. JETP 9, 37 (1969)

    Article  Google Scholar 

  3. Li, S.F.: The electromagneto-acoustic surface wave in a piezoelectric medium: the Bleustein–Gulyaev mode. J. Appl. Phys. 80, 5264–5269 (1996)

    Article  ADS  Google Scholar 

  4. Royer, D., Dieulesaint, E.: Elastic Waves in Solids I: Free and Guided Propagation. Springer, Berlin (2000)

    Book  Google Scholar 

  5. Ganguly, M.: Propagation of Bleustein–Gulyaev waves in a non-homogeneous piezoelectric half-space of 6 mm hexagonal symmetry. Czechoslov. J. Phys. B 34(7), 645–654 (1984)

    Article  ADS  Google Scholar 

  6. Zinchuk, L.P., Podlipenets, A.N., Shulga, N.A.: Construction of dispersion equation for electro-elastic shear wave in layered periodic media. Sov. Appl. Mech. 27, 84–93 (1990)

    Google Scholar 

  7. Zinchuk, L.P., Podlipenets, A.N.: Vibrational modes of a surface shear wave propagating in a regularly layered electro-elastic half-space. Sov. Appl. Mech. 27, 775–779 (1992)

    Article  ADS  Google Scholar 

  8. Jin, F., Wang, Z., Wang, T.: The Bleustein–Gulyaev (B–G) wave in a piezoelectric layered half-space. Int. J. Eng. Sci. 39(1), 1271–1285 (2001)

    Article  Google Scholar 

  9. Cao, X., Jin, F., Wang, Z., Lu, T.J.: Bleustein–Gulyaev waves in a functionally graded piezoelectric material layered structure. Sci. China Phys. Mech. Astron. 52, 613 (2009)

    Article  ADS  Google Scholar 

  10. Qian, Z., Jin, F., Li, P., Hirose, S.: Bleustein–Gulyaev waves in 6 mm piezoelectric materials loaded with a viscous liquid layer of finite thickness. Int. J. Solids Struct. 47(25–26), 3513–3518 (2010)

    Article  Google Scholar 

  11. Chen, W.: Surface effect on Bleustein–Gulyaev wave in a piezoelectric half-space. Theor. Appl. Mech. Lett. 1(4), 410011–410014 (2011)

    Article  Google Scholar 

  12. Rousseau, M., Maugin, G.A.: Quasi-particles associated with Bleustein–Gulyaev SAWs: perturbations by elastic nonlinearities. Int. J. Non-linear Mech. 47(1), 67–71 (2012)

    Article  ADS  Google Scholar 

  13. Li, P., Jin, F., Qian, Z.: Propagation of the Bleustein–Gulyaev waves in a functionally graded transversely isotropic electro-magneto-elastic half-space. Eur. J. Mech. A Solids 37, 17–23 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  14. Yang, J.: Special Topics in the Theory of Piezoelectricity. Springer, Berlin (2009)

    Book  Google Scholar 

  15. Abd-alla, A.N.: Nonlinear constitutive equations for thermo-electroelastic materials. Mech. Res. Commun. 24(3), 335–346 (1999)

    Article  MathSciNet  Google Scholar 

  16. Abd-alla, A.N., Asker, N.: Numerical simulations for the phase velocities and the electromechanical coupling factor of the Bleustein–Gulyaev waves in some piezoelectric smart materials. Math. Mech. Solids 21(5), 539–551 (2016)

    Article  MathSciNet  Google Scholar 

  17. Altenbach, H., Eremeyev, V.A., Lebedev, L,P., Rendon, L,A.: Acceleration waves and ellipticity in thermoelastic micropolar media. Arch. Appl. Mech. 80(3), 217–227 (2010)

    Article  ADS  Google Scholar 

  18. Eremeyev, V.A.: Acceleration waves in micropolar elastic media. Dokl. Phys. 50(4), 204–206 (2005)

    Article  ADS  Google Scholar 

  19. Abbas, I., Abd-alla, A.N.: A study of generalized themoelastic interaction in an infinite fibre-reinforced anisotropic plate containing a circular hole. Acta Phys. Pol. A 119(6), 814–818 (2011)

    Article  Google Scholar 

  20. Abbas, I.A., Abd-alla, A.N., Othman, I.A.: Generalized magneto-thermo-elasticity in a fiber-reinforced anisotropic half-space. Int. J. Thermophys. 32(5), 1071–1085 (2011)

    Article  ADS  Google Scholar 

  21. Abd-alla, A.N., Eshaq, H.A., Elhaes, H.: The phenomena of reflection and transmission waves in smart nano materiales. J. Comput. Theor. Nanosci. 8(9), 1670–1678 (2011)

    Article  Google Scholar 

  22. Abd-alla, A.N., Hasbullah, N.F., Hossen, H.M.: The frequency equations for shear horizontal waves in semiconductor/piezoelectric structures under the influence of initial stress. J. Comput. Theor. Nanosci. 13, 6475–6481 (2016)

    Article  Google Scholar 

  23. Abd-alla, A.N., Alhossain, A., Elhaes, H., Medhat, I.: Reflection and refraction of waves in nano-smart materials: anisotropic thermo-piezoelectric materials. J. Comput. Theor. Nanosci. 11(4), 715–726 (2014)

    Article  Google Scholar 

  24. Abd-alla, A.N., Alhossain, A., Farhoud, F.A., Ibrahim, M.: The mathematical model of reflection and refraction of plane quasi-vertical transverse waves at interface nanocomposite smart material. J. Comput. Theor. Nanosci. 8, 1193–1202 (2011)

    Article  Google Scholar 

  25. Abd-alla, A.N., Alshaikh, F., Mechai, I., Abass, I.A.: Influence of initial stresses and piezoelectric constants on the propagation bulk acoustic waves in an anisotropic smart material (Aluminum Nitrite). J. Comput. Theor. Nanosci. 13, 6488–6494 (2016)

    Article  Google Scholar 

  26. Placidi, L., Andreaus, U., Della Corte, A., Lekszycki, T.: Gedanken experiments for the determination of two-dimensional linear second gradient elasticity coefficients. Z. Angew. Math. Phys. 66(6), 3699–3725 (2015)

    Article  MathSciNet  Google Scholar 

  27. Misra, A., Poorsolhjouy, P.: Identification of higher-order elastic constants for grain assemblies based upon granular micromechanics. Math. Mech. Complex Syst. 3(3), 285–308 (2015)

    Article  MathSciNet  Google Scholar 

  28. Engelbrecht, J., Berezovski, A.: Reflections on mathematical models of deformation waves in elastic microstructured solids. Math. Mech. Complex Syst. 3(1), 43–82 (2015)

    Article  MathSciNet  Google Scholar 

  29. Placidi, L., dell’Isola, F., Ianiro, N., Sciarra, G.: Variational formulation of pre-stressed solid–fluid mixture theory, with an application to wave phenomena. Eur. J. Mech. A Solids 27, 582–606 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  30. Giorgio, I., Culla, A., Del Vescovo, D.: Multimode vibration control using several piezoelectric transducers shunted with a multiterminal network. Arch. Appl. Mech. 79(9), 859–879 (2009)

    Article  ADS  Google Scholar 

  31. Maurini, C., dell’Isola, F., Del Vescovo, D.: Comparison of piezoelectronic networks acting as distributed vibration absorbers. Mech. Syst. Signal Process. 18, 1243–1271 (2004)

    Article  ADS  Google Scholar 

  32. Maurini, C., dell’Isola, F., Pouget, J.: On models of layered piezoelectric beams for passive vibration control. J. Phys. IV (Proceedings), P.E. Lexcellent C., Frejus: edpsciences.org, pp. 307–316 (2004)

  33. Maurini, C., Pouget, J., dell’Isola, F.: Extension of the Euler–Bernoulli model of piezoelectric laminates to include 3D effects via a mixed approach. Comput. Struct. 84(22–23), 1438–1458 (2006)

    Article  Google Scholar 

  34. Maurini, C., Pouget, J., dell’Isola, F.: On a model of layered piezoelectric beams including transverse stress effect. Int. J. Solids Struct. 41, 4473–4502 (2004)

    Article  Google Scholar 

  35. Wang, X., Schiavone, P.: Neutrality of eccentrically coated elastic inclusions. Math. Mech. Complex Syst. 3(2), 163–175 (2015)

    Article  MathSciNet  Google Scholar 

  36. Franciosi, P., Spagnuolo, M., Salman, O. U. (2018) Mean Green operators of deformable fiber networks embedded in a compliant matrix and property estimates. In: Continuum Mechanics and Thermodynamics, pp. 1–32. Cambridge: Cambridge University Press

    Article  ADS  MathSciNet  Google Scholar 

  37. Bertram, A., Glüge, R.: Gradient materials with internal constraints. Math. Mech. Complex Syst. 4(1), 1–15 (2016)

    Article  MathSciNet  Google Scholar 

  38. Barchiesi, E., Spagnuolo, M., Placidi, L.: Mechanical metamaterials: a state of the art. Math. Mech. Solids (2018). https://doi.org/10.1177/1081286517735695

    Article  MathSciNet  Google Scholar 

  39. Spagnuolo, M., Andreaus, U.: A targeted review on large deformations of planar elastic beams: extensibility, distributed loads, buckling and post-buckling. Math. Mech. Solids (2018). https://doi.org/10.1177/1081286517737000

    Article  MathSciNet  Google Scholar 

  40. di Cosmo, F., Laudato, M., Spagnuolo, M.: Acoustic metamaterials based on local resonances: homogenization, optimization and applications. In: Generalized Models and Non-classical Approaches in Complex Materials, vol. 1, pp. 247–274. Springer, Cham. Advanced Structured Materials 89 (2018). https://doi.org/10.1007/978-3-319-72440-9_12

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fatimah Alshaikh.

Additional information

Communicated by Francesco dell’Isola.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alshaikh, F. Electromechanical coupling of Bleustein–Gulyaev wave propagation in rotating prestressed piezoelectric layered materials. Continuum Mech. Thermodyn. 32, 749–759 (2020). https://doi.org/10.1007/s00161-018-0723-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00161-018-0723-x

Keywords

Navigation