Single-walled boron nitride nanotube as nano-sensor

Abstract

Nowadays, the eye-catching characteristics of boron nitride nanotubes, in particular, the capability of sensing nano-objects, have opened up new prospects to develop the bio-/nano-sensing technologies. This research deals with physically affected single-walled boron nitride nanotubes (SWBNNT) as nano-sensors for sensing attached nanoscale objects. Three different boundary conditions including simply supported at both ends, clamped-free and clamped-clamped are considered to illustrate the vibrational behaviour of SWBNNTs as nano-sensor. The Rayleigh and Timoshenko beam theories are employed to model the SWBNNT. Also, the nonlocal strain gradient model is utilized to capture the size-dependent effects. One of the major factors in the scrutiny of mass nano-sensors is pertinent to the variation in frequency shift magnitudes against the number and mass weight values of attached nanoparticles. Herein, the effects of the nonlocal and material length scale parameters, the number and location of nano-objects, the rotary inertia and mass weight magnitudes of attached nanoparticles, the aspect ratio of SWBNNT, electrical potential and different boundary conditions on the variation in frequency shift and resonant frequency are analysed.

This is a preview of subscription content, log in to check access.

References

  1. 1.

    Hauptmann, P., Lucklum, R., Puttmer, A., Henning, B.: Ultrasonic sensors for process monitoring and chemical analysis: state-of-the-art and trends. Sens. Actuators A 67, 32–48 (1998)

    Article  Google Scholar 

  2. 2.

    Thundat, T., Oden, P.I., Warmack, R.J.: Microcantilever sensors. Microscale Thermophys. Eng. 1(3), 185–199 (1997)

    Article  Google Scholar 

  3. 3.

    Ilic, B., Czaplewski, D., Craighead, H.G., Neuzil, P., Campagnolo, C., Batt, C.: Mechanical resonant immunospecific biological detector. Appl. Phys. Lett. 77, 450 (2000)

    ADS  Article  Google Scholar 

  4. 4.

    Wu, D.H., Chien, W.T., Chen, C.S., Chen, H.H.: Resonant frequency analysis of fixed-free single-walled carbon nanotube-based mass sensor. Sens. Actuators A 126, 117–121 (2006)

    Article  Google Scholar 

  5. 5.

    Adhikari, S., Chowdhury, R.: The calibration of carbon nanotube based bionanosensors. J. Appl. Phys. 107(124322), 1–8 (2010)

    Google Scholar 

  6. 6.

    Chowdhury, R., Adhikari, S., Mitchell, J.: Vibrating carbon nanotube based biosensors. Physica E 42, 104–109 (2009)

    ADS  Article  Google Scholar 

  7. 7.

    Mehdipour, I., Barari, A., Domairy, G.: Application of a cantilevered SWCNT with mass at the tip as a nanomechanical sensor. Comput. Mater. Sci. 50, 1830–1833 (2011)

    Article  Google Scholar 

  8. 8.

    Joshi, A.Y., Harsha, S.P., Sharma, S.C.: Vibration signature analysis of single walled carbon nanotube based nanomechanical sensors. Physica E 42, 2115–2123 (2010)

    ADS  Article  Google Scholar 

  9. 9.

    Arash, B., Wang, Q., Varadan, V.J.: Carbon nanotube-based sensors for detection of gas atoms. ASME J. Nanotechnol. Eng. Med. 2(021010), 1–4 (2011)

    Google Scholar 

  10. 10.

    Aydogdu, M., Filiz, S.: Modeling carbon nanotube-based mass sensors using axial vibration and nonlocal elasticity. Physica E 43(6), 1229–1234 (2011)

    ADS  Article  Google Scholar 

  11. 11.

    Murmu, T., Adhikari, S.: Nonlocal frequency analysis of nanoscale biosensors. Sens. Actuators A 173(1), 41–48 (2012)

    Article  Google Scholar 

  12. 12.

    Murmu, T., Adhikari, S.: Nonlocal mass nanosensors based on vibrating monolayer graphene sheets. Sens. Actuators B 188, 1319–1327 (2013)

    Article  Google Scholar 

  13. 13.

    Kiani, K., Ghaffari, H., Mehri, B.: Application of elastically supported single-walled carbon nanotubes for sensing arbitrarily attached nano-objects. Curr. Appl. Phys. 13(1), 107–120 (2013)

    ADS  Article  Google Scholar 

  14. 14.

    Kiani, K.: Magnetically affected single-walled carbon nanotubes as nanosensors. Mech. Res. Commun. 60, 33–39 (2014)

    ADS  Article  Google Scholar 

  15. 15.

    Kiani, K.: Nanomechanical sensors based on elastically supported double-walled carbon nanotubes. Appl. Math. Comput. 270, 216–241 (2015)

    MathSciNet  MATH  Google Scholar 

  16. 16.

    Chopra, N.G., Zettl, A.: Measurement of the elastic modulus of a multi-wall boron nitride nanotube. Solid State Commun. 105, 297–300 (1998)

    ADS  Article  Google Scholar 

  17. 17.

    Ghorbanpour Arani, A., Roudbari, M.A., Amir, S.: Nonlocal vibration of SWBNNT embedded in bundle of CNTs under a moving nanoparticle. Physica B 452, 3646–3653 (2012)

    ADS  Article  Google Scholar 

  18. 18.

    Ghorbanpour Arani, A., Roudbari, M.A.: Nonlocal piezoelastic surface effect on the vibration of visco-Pasternak coupled boron nitride nanotube system under a moving nanoparticle. Thin Solid Films 542(2), 232–241 (2013)

    ADS  Article  Google Scholar 

  19. 19.

    Ghorbanpour Arani, A., Hafizi Bidgoli, A., Karamali Ravandi, A., Roudbari, M.A., Amir, S., Azizkhani, M.B.: Induced nonlocal electric wave propagation of boron nitride nanotubes. J. Mech. Sci. Technol. 27(10), 3063–3071 (2013)

    Article  Google Scholar 

  20. 20.

    Ghorbanpour Arani, A., Roudbari, M.A.: Surface stress, initial stress and Knudsen-dependent flow velocity effects on the electro-thermo nonlocal wave propagation of SWBNNTs. Physica B 452, 159–165 (2014)

    ADS  Article  Google Scholar 

  21. 21.

    Ghorbanpour Arani, A., Jalilvand, A., Ghaffari, M., Talebi Mazraehshahi, M., Kolahchi, R., Roudbari, M.A., Amir, S.: Nonlinear pull-in instability of boron nitride nano-switches considering electrostatic and Casimir forces. Sci. Iran. F 21(3), 1183–1196 (2014)

    Google Scholar 

  22. 22.

    Ghorbanpour Arani, A., Karamali Ravandi, A., Roudbari, M.A., Azizkhani, M.B., Hafizi Bidgoli, A.: Axial and transverse vibration of SWBNNT system coupled Pasternak foundation under a moving nanoparticle using Timoshenko beam theory. J. Solid Mech. 7(3), 239–254 (2015)

    Google Scholar 

  23. 23.

    Ansari, R., Rouhi, S., Mirnezhad, M., Aryayi, M.: Stability characteristics of single-walled boron nitride nanotubes. Arch. Civil Mech. Eng. 15(1), 162–170 (2015)

    Article  Google Scholar 

  24. 24.

    Ansari, R., Rouhi, H., Mirnezhad, M.: Stability analysis of boron nitride nanotubes via a combined continuum-atomistic model. Sci. Iran. F 20(6), 2314–2322 (2013)

    Google Scholar 

  25. 25.

    Ciofani, G., Danti, S., D’Alessandro, D., Moscato, S., Menciassi, A.: Assessing cytotoxicity of boron nitride nanotubes: interference with the MTT assay. Biochem. Biophys. Res. Commun. 394(2), 405–411 (2010)

    Article  Google Scholar 

  26. 26.

    Chowdhury, R., Wang, C.Y., Adhikari, S., Scarpa, F.: Vibration and symmetry-breaking of boron nitride nanotubes. Nanotechnology 21(365702), 1–9 (2010)

    Google Scholar 

  27. 27.

    Chowdhury, R., Adhikari, S.: Boron-nitride nanotubes as zeptogram-scale bionanosensors: theoretical investigations. IEEE Trans. Nanotechnol 10(4), 659–667 (2011)

    ADS  Article  Google Scholar 

  28. 28.

    Panchal, M.B., Upadhyay, S.H., Harsha, S.P.: Mass detection using single walled boron nitride nanotube as a nanomechanical resonator. NANO 7(4), 1250029 1–1250029 11 (2012)

    Article  Google Scholar 

  29. 29.

    Panchal, M.B., Upadhyay, S.H., Harsha, S.P.: Vibrational analysis of boron nitride nanotube based nanoresonators. ASME J. Nanotech. Eng. Med 3(3), 031004 1–031004 5 (2013)

    Google Scholar 

  30. 30.

    Panchal, M.B., Upadhyay, S.H.: Cantilevered single walled boron nitride nanotube based nanomechanical resonators of zigzag and armchair forms. Physica E 50, 73–82 (2013)

    ADS  Article  Google Scholar 

  31. 31.

    Panchal, M.B., Upadhyay, S.H.: Boron nitride nanotube-based biosensing of various bacterium/viruses: continuum modelling-based simulation approach. IET Nanobiotechnol. 8(3), 143–148 (2014)

    Article  Google Scholar 

  32. 32.

    Panchal, M.B., Upadhyay, S.H.: Boron nitride nanotube-based mass sensing of zeptogram scale. Spectrosc. Lett. 48(1), 17–21 (2015)

    Article  Google Scholar 

  33. 33.

    Adhikari, S.: Boron Nitride Nanotubes in Nanomedicine. A Volume in Micro and Nano Technologies, pp. 149–164. Elsevier Inc, New York (2016)

    Google Scholar 

  34. 34.

    Altenbach, H., Eremeyev, V.A.: On the shell theory on the nanoscale with surface stresses. Int. J. Eng. Sci. 49(12), 1294–1301 (2011)

    MathSciNet  MATH  Article  Google Scholar 

  35. 35.

    Dell’Isola, F., Seppecher, P., Madeo, A.: How contact interactions may depend on the shape of Cauchy cuts in Nth gradient continua: approach “à la D’Alembert”. Z. Angew. Math. Phys. 63(6), 1119–1141 (2012)

    MathSciNet  MATH  Article  Google Scholar 

  36. 36.

    Auffray, N., dell’Isola, F., Eremeyev, V.A., Madeo, A., Rosi, G.: Analytical continuum mechanics à la Hamilton-Piola least action principle for second gradient continua and capillary fluids. Math. Mech. Solids 20(4), 375–417 (2015)

    MathSciNet  MATH  Article  Google Scholar 

  37. 37.

    Placidi, L., Rosi, G., Giorgio, I., Madeo, A.: Reflection and transmission of plane waves at surfaces carrying material properties and embedded in second-gradient materials. Math. Mech. Solids 19(5), 555–578 (2014)

    MathSciNet  MATH  Article  Google Scholar 

  38. 38.

    Rosi, G., Giorgio, I., Eremeyev, V.A.: Propagation of linear compression waves through plane interfacial layers and mass adsorption in second gradient fluids. ZAMM Z. Angew. Math. Mech. 93(12), 914–927 (2013)

    MathSciNet  Article  Google Scholar 

  39. 39.

    Cazzani, A., Stochino, F., Turco, E.: On the whole spectrum of Timoshenko beams. Part I: a theoretical revisitation. Z. Angew. Math. Phys. 67(2), 24 (2016)

    MathSciNet  MATH  Article  Google Scholar 

  40. 40.

    Piccardo, G., Ranzi, G., Luongo, A.: A complete dynamic approach to the generalized beam theory cross-section analysis including extension and shear modes. Math. Mech. Solids 19(8), 900–924 (2014)

    MathSciNet  MATH  Article  Google Scholar 

  41. 41.

    Li, L., Hu, Y., Li, X.: Longitudinal vibration of size-dependent rods via nonlocal strain gradient theory. Int. J. Mech. Sci. 115, 135–144 (2016)

    Article  Google Scholar 

  42. 42.

    Lim, C.W., Zhang, G., Reddy, J.N.: A higher-order nonlocal elasticity and strain gradient theory and its applications in wave propagation. J. Mech. Phys. Solids 78, 298–313 (2015)

    ADS  MathSciNet  MATH  Article  Google Scholar 

  43. 43.

    Li, L., Hu, Y.: Buckling analysis of size-dependent nonlinear beams based on a nonlocal strain gradient theory. Int. J. Eng. Sci. 97, 84–94 (2015)

    MathSciNet  MATH  Article  Google Scholar 

  44. 44.

    Li, L., Hu, Y.: Wave propagation in fluid-conveying viscoelastic carbon nanotubes based on nonlocal strain gradient theory. Comput. Mat. Sci. 112, 282–288 (2016)

    Article  Google Scholar 

  45. 45.

    Li, L., Hu, Y., Ling, L.: Wave propagation in viscoelastic single-walled carbon nanotubes with surface effect under magnetic field based on nonlocal strain gradient theory. Physica E 75, 118–124 (2016)

    ADS  Article  Google Scholar 

  46. 46.

    Kiani, K.: Longitudinal and transverse vibration of a single-walled carbon nanotube subjected to a moving nanoparticle accounting for both nonlocal and inertial effects. Physica E 42(9), 2391–2401 (2010)

    ADS  MathSciNet  Article  Google Scholar 

  47. 47.

    Kiani, K., Wang, Q.: On the interaction of a single-walled carbon nanotube with a moving nanoparticle using nonlocal Rayleigh, Timoshenko, and higher-order beam theories. Eur. J. Mech. A Solids 31, 179–02 (2012)

    ADS  MathSciNet  MATH  Article  Google Scholar 

  48. 48.

    Kiani, K.: Nanoparticle delivery via stocky single-walled carbon nanotubes: a nonlinear-nonlocal continuum-based scrutiny. Compos. Struct. 116, 254–272 (2014)

    ADS  Article  Google Scholar 

  49. 49.

    Ghorbanpour Arani, A., Roudbari, M.A., Kiani, K.: Vibration of double-walled carbon nanotubes coupled by temperature-dependent medium under a moving nanoparticle with multi physical fields. Mech. Adv. Mater. Struct. 23, 281–291 (2016)

    Article  Google Scholar 

  50. 50.

    Ghorbanpour Arani, A., Roudbari, M.A., Amir, S.: Longitudinal magnetic field effect on wave propagation of fluid-conveyed SWCNT using Knudsen number and surface considerations. Appl. Math. Modell. 40(3), 2025–2038 (2016)

    MathSciNet  MATH  Article  Google Scholar 

  51. 51.

    Lu, P., Lee, H.P., Lu, C., Zhang, P.Q.: Dynamic properties of flexural beams using a nonlocal elasticity model. J. Appl. Phys. 99(073510), 1–9 (2006)

    Google Scholar 

  52. 52.

    Shen, Z.B., Tang, G.J., Zhang, L., Li, X.F.: Vibration of double-walled carbon nanotube based nanomechanical sensor with initial axial stress. Comput. Mater. Sci. 58, 51–58 (2012)

    Article  Google Scholar 

  53. 53.

    Li, X.F., Tang, G.J., Shen, Z.B., Lee, K.Y.: Resonance frequency and mass identification of zeptogram-scale nanosensor based on the nonlocal beam theory. Ultrasonics 55, 75–84 (2015)

    Article  Google Scholar 

  54. 54.

    Soltani, P., Pashaei Narenjbon, O., Taherian, M.M., Farshidianfar, A.: An efficient continuum model for CNTs-based bio-sensors. Eur. Phys. J. Appl. Phys. 59(10403), 1–10 (2012)

    Google Scholar 

  55. 55.

    Reddy, J.N., Pang, S.D.: Nonlocal continuum theories of beams for the analysis of carbon nanotubes. J. Appl. Phys. 103(023511), 1–16 (2008)

    Google Scholar 

  56. 56.

    Wang, C.M., Zhang, Y.Y., He, X.Q.: Vibration of nonlocal Timoshenko beams. Nanotechnology 18(105401), 1–9 (2007)

    Google Scholar 

  57. 57.

    Shen, Z.B., Li, X.F., Sheng, L.P., Tang, G.J.: Transverse vibration of nanotube-based micro-mass sensor via nonlocal Timoshenko beam theory. Comput. Mater. Sci. 53, 340–346 (2012)

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Mir Abbas Roudbari.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Communicated by Francesco dell’Isola.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Roudbari, M.A., Ansari, R. Single-walled boron nitride nanotube as nano-sensor. Continuum Mech. Thermodyn. 32, 729–748 (2020). https://doi.org/10.1007/s00161-018-0719-6

Download citation

Keywords

  • SWBNNT
  • Vibration
  • Attached nanoparticle
  • Nonlocal strain gradient model
  • Electrical potential
  • Nano-sensor