Viscoelasticity of short fiber composites in the time domain: from three-phases micromechanics to finite element analyses

  • Kevin Breuer
  • Marc Schöneich
  • Markus Stommel
Original Article


Micromechanical models can be used to calculate the mechanical properties of short glass fiber reinforced thermoplastics. In the present work, a three-step framework is used to validate a three-phases micromechanical model (RDI model) in the time domain, since the analysis of technical components by the finite element method is usually carried out in the time domain. The framework includes mechanical characterization, the implementation of the RDI model and a finite element analysis. The characterization delivers necessary information about the material phases of the composite. A dynamic mechanical analysis is performed to characterize the matrix material in order to obtain the linear viscoelastic properties. The mechanical properties of the matrix–fiber interphase are determined with an inverse calculation. In the second step, the RDI model is used to calculate the frequency depended effective stiffness of the composite. A new developed approach transforms the effective stiffness from the frequency domain into the time domain thus avoiding an explicit inverse Laplace–Carson transformation. In the third step, the RDI model is experimentally validated.


Anisotropic Short fiber reinforced Time domain Finite element analysis Transformation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



  1. 1.
    Eshelby, J.D.: The determination of the elastic field of an ellipsoidal inclusion, and related problems. Proc R Soc Lon Ser A 241(1226), 376–396 (1957)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Mori, T., Tanaka, K.: Average stress in matrix and average elastic energy of materials with misfitting inclusions. Acta Metall. 21(5), 571–574 (1973). CrossRefGoogle Scholar
  3. 3.
    Benveniste, Y.: A new approach to the application of Mori–Tanaka’s theory in composite materials. Mech. Mater. 6(2), 147–157 (1987). CrossRefGoogle Scholar
  4. 4.
    Hill, R.: A self-consistent mechanics of composite materials. J. Mech. Phys. Solids 13(4), 213–222 (1965). ADSCrossRefGoogle Scholar
  5. 5.
    Kim, J.-K., Sham, M.-L., Wu, J.: Nanoscale characterisation of interphase in silane treated glass fibre composites. Compos. Part A Appl. Sci. Manuf. 21, 607–618 (2001)CrossRefGoogle Scholar
  6. 6.
    Hori, M., Nemat-Nasser, S.: Double-inclusion model and overall moduli of multi-phase composites. Mech. Mater. 14, 189–206 (1993)CrossRefGoogle Scholar
  7. 7.
    Schöneich, M., Dinzart, F., Sabar, H., Berbenni, S., Stommel, M.: A coated inclusion-based homogenization scheme for viscoelastic composites with interphases. Mech. Mater. 105, 89–98 (2017)CrossRefGoogle Scholar
  8. 8.
    Skrzypek, J.J., Ganczarski, A.W. (eds.): Mechanics of Anisotropic Materials. Engineering Materials. Springer, Cham (2015)zbMATHGoogle Scholar
  9. 9.
    Celanese: Celanex 2300 GV1/20 Datasheet (2017)Google Scholar
  10. 10.
    Williams, M.L., Landel, R.F., Ferry, J.D.: The temperature dependence of relaxation mechanisms in amorphous polymers and other glass-forming liquids. J. Am. Chem. Soc. 77(14), 3701–3707 (1955). CrossRefGoogle Scholar
  11. 11.
    Tschoegl, N.W.: The Phenomenological Theory of Linear Viscoelastic Behavior. An Introduction. Springer, Berlin (1989)CrossRefzbMATHGoogle Scholar
  12. 12.
    Sambale, A., Schöneich, M., Stommel, M.: Influence of the processing parameters on the fiber-matrix-interphase in short glass fiber-reinforced thermoplastics. Polymers 9, 221 (2017)CrossRefGoogle Scholar
  13. 13.
    Gao, S.-L., Mäder, E.: Characterisation of interphase nanoscale property variations in glass fibre reinforced polypropylene and epoxy resin composites. Compos. Part A Appl. Sci. Manuf. 33(4), 559–576 (2002). CrossRefGoogle Scholar
  14. 14.
    Wacker, G., Bledzki, A.K., Chate, A.: Effect of interphase on the transverse Young’s modulus of glass/epoxy composites. Compos. Part A Appl. Sci. Manuf. 29(5–6), 619–626 (1998). CrossRefGoogle Scholar
  15. 15.
    Diani, J., Gilormini, P., Merckel, Y., Vion-Loisel, F.: Micromechanical modeling of the linear viscoelasticity of carbon-black filled styrene butadiene rubbers. The role of the filler-rubber interphase. Mech. Mater. 59, 65–72 (2013). CrossRefGoogle Scholar
  16. 16.
    Batista, N.L., Olivier, P., Bernhart, G., Rezende, M.C., Botelho, E.C.: Correlation between degree of crystallinity, morphology and mechanical properties of PPS/carbon fiber laminates. Mat. Res. 19(1), 195–201 (2016). CrossRefGoogle Scholar
  17. 17.
    Park, C.-S., Lee, Ki-Jun, Kim, Seong Woo, Lee, Y.K., Nam, J.-D.: Crystallinity morphology and dynamic mechanical characteristics of PBT polymer and glass fiber-reinforced composites. J. Appl. Polym. Sci 2002(86(2)), 478–488 (2002)CrossRefGoogle Scholar
  18. 18.
    Brinson, L.C., Lin, W.S.: Comparison of micromechanics methods for effective properties of multiphase viscoelastic composites. Compos. Struct. 41(3–4), 353–367 (1998). CrossRefGoogle Scholar
  19. 19.
    Lévesque, M., Gilchrist, M.D., Bouleau, N., Derrien, K., Baptiste, D.: Numerical inversion of the Laplace–Carson transform applied to homogenization of randomly reinforced linear viscoelastic media. Comput. Mech. 40(4), 771–789 (2007). CrossRefzbMATHGoogle Scholar
  20. 20.
    Kaiser, J.-M.: Beitrag zur mikromechanischen Berechnung kurzfaserverstärkter Kunststoffe - Deformation und Versagen. Dissertation, Universität des Saarlandes (2013)Google Scholar
  21. 21.
    Kaiser, J.-M., Stommel, M.: Modified mean-field formulations for the improved simulation of short fiber reinforced thermoplastics. Compos. Sci. Technol. 99, 75–81 (2014). CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Chair of Plastics Technology, Mechanical EngineeringTU Dortmund UniversityDortmundGermany
  2. 2.INM - Leibniz Institute for New MaterialsSaarbrueckenGermany

Personalised recommendations