Quantitative analysis of deformation mechanisms in pantographic substructures: experiments and modeling

Abstract

In order to get detailed information about the mechanical behavior of pantographic elementary substructure and elements, small-scale specimens were sintered using polyamide powder, constituted by three orthogonal pairs of beams interconnected through pivots forming pantographic cells. The mechanical properties of interconnecting pivots and constituting beams are investigated by comparing experimental evidence with an enhanced Piola–Hencky model. The careful agreement between experimental and predicted results allows us to estimate: (i) the macro-shear stiffness of interconnecting pivots (corresponding to micro-torsional stiffness), (ii) extensional stiffness and (iii) bending stiffness of constituting beams.

This is a preview of subscription content, log in to check access.

References

  1. 1.

    dell’Isola, F., Lekszycki, T., Pawlikowski, M., Grygoruk, R., Greco, L.: Designing a light fabric metamaterial being highly macroscopically tough under directional extension: first experimental evidence. Zeitschrift für angewandte Mathematik und Physik 66(6), 3473–3498 (2015)

    ADS  MathSciNet  MATH  Article  Google Scholar 

  2. 2.

    dell’Isola, F., Della Corte, A., Greco, L., Luongo, A., Luongo, A.: Plane bias extension test for a continuum with two inextensible families of fibers: a variational treatment with lagrange multipliers and a perturbation solution. Int. J. Solids Struct. 81, 1–12 (2016)

    Article  Google Scholar 

  3. 3.

    dell’Isola, F., Cuomo, M., Greco, L., Della, A.: Corte. Bias extension test for pantographic sheets: numerical simulations based on second gradient shear energies. J. Eng. Math. (2016). https://doi.org/10.1007/s10665-016-9865-7

    MATH  Article  Google Scholar 

  4. 4.

    Steigmann, D.J., Pipkin, A.C.: Equilibrium of elastic nets. Philos. Trans. R. Soc. Lond. A Math. Phys. Eng. Sci. 335(1639), 419–454 (1991)

    ADS  MathSciNet  MATH  Article  Google Scholar 

  5. 5.

    dell’Isola, F., Steigmann, D.: A two-dimensional gradient-elasticity theory for woven fabrics. J. Elast. 118(1), 113–125 (2015)

    MathSciNet  MATH  Article  Google Scholar 

  6. 6.

    Spagnuolo, M., Barcz, K., Pfaff, A., dell’Isola, F., Franciosi, P.: Qualitative pivot damage analysis in aluminum printed pantographic sheets: numerics and experiments. Mech. Res. Commun. 83, 47–52 (2017)

    Article  Google Scholar 

  7. 7.

    Harrison, P.: Modelling the forming mechanics of engineering fabrics using a mutually constrained pantographic beam and membrane mesh. Compos. Part A Appl. Sci. Manuf. 81, 145–157 (2016)

    Article  Google Scholar 

  8. 8.

    dell’Isola, F., Giorgio, I., Pawlikowski, M., Rizzi, N.L.: Large deformations of planar extensible beams and pantographic lattices: Heuristic homogenisation, experimental and numerical examples of equilibrium. Proc. R. Soc. Lond. A Math. Phys. Eng. Sci. 472(2185), 20150790 (2016)

    ADS  Article  Google Scholar 

  9. 9.

    Giorgio, I., Rizzi, N.L., Turco, E.: Continuum modelling of pantographic sheets for out-of-plane bifurcation and vibrational analysis. Proc. R. Soc. A Math. Phys. Eng. Sci. 473, 20170636 (2017)

    ADS  MathSciNet  MATH  Article  Google Scholar 

  10. 10.

    dell’Isola, F., Andreaus, U., Placidi, L.: At the origins and in the vanguard of peridynamics, non-local and higher-gradient continuum mechanics: an underestimated and still topical contribution of Gabrio Piola. Math. Mech. Solids 20(8), 887–928 (2015)

    MathSciNet  MATH  Article  Google Scholar 

  11. 11.

    Alibert, J.-J., Seppecher, P., dell’Isola, F.: Truss modular beams with deformation energy depending on higher displacement gradients. Math. Mech. Solids 8(1), 51–73 (2003)

    MathSciNet  MATH  Article  Google Scholar 

  12. 12.

    Alibert, J.-J., Della, A.: Corte. Second-gradient continua as homogenized limit of pantographic microstructured plates: a rigorous proof. Zeitschrift für Angewandte Mathematik und Physik 66(5), 2855–2870 (2015)

    ADS  MathSciNet  MATH  Article  Google Scholar 

  13. 13.

    Carcaterra, A., dell’Isola, F., Esposito, R., Pulvirenti, M.: Macroscopic description of microscopically strongly inhomogenous systems: A mathematical basis for the synthesis of higher gradients metamaterials. Arch. Ration. Mech. Anal. 218(3), 1239–1262 (2015)

    MathSciNet  MATH  Article  Google Scholar 

  14. 14.

    Pideri, C., Seppecher, P.: A second gradient material resulting from the homogenization of an heterogeneous linear elastic medium. Contin. Mech. Thermodyn. 9(5), 241–257 (1997)

    ADS  MathSciNet  MATH  Article  Google Scholar 

  15. 15.

    Javili, A., dell’Isola, F., Steinmann, P.: Geometrically nonlinear higher-gradient elasticity with energetic boundaries. J. Mech. Phys. Solids 61(12), 2381–2401 (2013)

    ADS  MathSciNet  MATH  Article  Google Scholar 

  16. 16.

    Bertram, A.: Finite gradient elasticity and plasticity: a constitutive finite gradient elasticity and plasticity: a constitutive thermodynamical framework. Contin. Mech. Thermodyn. 28, 869–883 (2016)

    ADS  MathSciNet  MATH  Article  Google Scholar 

  17. 17.

    Auffray, N., dell’Isola, F., Eremeyev, V.A., Madeo, A., Rosi, G.: Analytical continuum mechanics á la Hamilton-Piola least action principle for second gradient continua and capillary fluids. Math. Mech. Solids 20(4), 375–417 (2015)

    MathSciNet  MATH  Article  Google Scholar 

  18. 18.

    Greco, L., Giorgio, I., Battista, A.: In plane shear and bending for first gradient inextensible pantographic sheets: numerical study of deformed shapes and global constraint reactions. Math. Mech. Solids 22(10), 1950–1975 (2017)

    MathSciNet  MATH  Article  Google Scholar 

  19. 19.

    Eremeyev, V.A., dell’Isola, F., Boutin, C., Steigmann, D.: Linear pantographic sheets: existence and uniqueness of weak solutions. J. Elast. 2017, 1–22 (2017)

    MATH  Google Scholar 

  20. 20.

    Eremeyev, V.A., Pietraszkiewicz, W.: Material symmetry group and constitutive equations of micropolar anisotropic elastic solids. Math. Mech. Solids 21(2), 210–221 (2016)

    MathSciNet  MATH  Article  Google Scholar 

  21. 21.

    Bertram, A., Glüge, R.: Gradient materials with internal constraints. Math. Mech. Complex Syst. 4(1), 1–15 (2016)

    MathSciNet  MATH  Article  Google Scholar 

  22. 22.

    Milton, G., Briane, M., Harutyunyan, D.: On the possible effective elasticity tensors of 2-dimensional and 3-dimensional printed materials. Math. Mech. Complex Syst. 5(1), 41–94 (2017)

    MathSciNet  MATH  Article  Google Scholar 

  23. 23.

    Chatzigeorgiou, G., Javili, A., Steinmann, P.: Multiscale modelling for composites with energetic interfaces at the micro- or nanoscale. Math. Mech.Solids 20(9), 1130–1145 (2015)

    MathSciNet  MATH  Article  Google Scholar 

  24. 24.

    Misra, A., Poorsolhjouy, P.: Granular micromechanics based micromorphic model predicts frequency band gaps. Contin. Mech. Thermodyn. 28(1), 215–234 (2016)

    ADS  MathSciNet  MATH  Article  Google Scholar 

  25. 25.

    Misra, A., Poorsolhjouy, P.: Grain- and macro-scale kinematics for granular micromechanics based small deformation micromorphic continuum model. Mech. Res. Commun. 81, 1–6 (2017)

    Article  Google Scholar 

  26. 26.

    Khakalo, S., Niiranen, J.: Form II of Mindlin’s second strain gradient theory of elasticity with a simplification: for materials and structures from nano- to macro-scales. Eur. J. Mech. A/Solids (to appear), (2018)

  27. 27.

    Khakalo, S., Balobanov, V., Niiranen, J.: Modelling size-dependent bending, buckling and vibrations of 2D triangular lattices by strain gradient elasticity models: applications to sandwich beams and auxetics. J. Eng. Sci. 127, 33–52 (2018)

    MathSciNet  MATH  Article  Google Scholar 

  28. 28.

    Turco, E., dell’Isola, F., Cazzani, A., Rizzi, N.L.: Hencky-type discrete model for pantographic structures: numerical comparison with second gradient continuum models. Zeitschrift für Angewandte Mathematik und Physik 67(4), 1–28 (2016)

    MathSciNet  MATH  Article  Google Scholar 

  29. 29.

    Turco, E., Giorgio, I., Misra, A., dell’Isola, F.: King post truss as a motif for internal structure of (meta)material with controlled properties. R. Soc. Open Sci. 4, 171153 (2017)

    ADS  Article  Google Scholar 

  30. 30.

    Golaszewski, M., Grygoruk, R., Giorgio, I., Laudato, M., Di Cosmo, F.: Metamaterials with relative displacements in their microstructure: technological challenges in 3D printing, experiments and numerical predictions. Contin. Mech. Thermodyn. (to appear) (2018)

  31. 31.

    Turco, E., Barcz, K., Pawlikowski, M., Rizzi, N.L.: Non-standard coupled extensional and bending bias tests for planar pantographic lattices. Part I: numerical simulations. Zeitschrift für Angewandte Mathematik und Physik 67(122), 1–16 (2016)

    MathSciNet  MATH  Google Scholar 

  32. 32.

    Turco, E., Barcz, K., Rizzi, N.L.: Non-standard coupled extensional and bending bias tests for planar pantographic lattices. Part II: comparison with experimental evidence. Zeitschrift für Angewandte Mathematik und Physik 67(123), 1–16 (2016)

    MathSciNet  MATH  Google Scholar 

  33. 33.

    Turco, E., Golaszewski, M., Giorgio, I., D’Annibale, F.: Pantographic lattices with non-orthogonal fibres: experiments and their numerical simulations. Compos. Part B Eng. 118, 1–14 (2017)

    Article  Google Scholar 

  34. 34.

    Giorgio, I.: Numerical identification procedure between a micro Cauchy model and a macro second gradient model for planar pantographic structures. Zeitschrift für Angewandte Mathematik und Mechanik 67(95), 1–17 (2016)

    MathSciNet  MATH  Google Scholar 

  35. 35.

    Placidi, L., Andreaus, U., Della Corte, A., Lekszycki, T.: Gedanken experiments for the determination of two-dimensional linear second gradient elasticity coefficients. Zeitschrift für Angewandte Mathematik und Physik (ZAMP) 66(6), 3699–3725 (2015)

    ADS  MathSciNet  MATH  Article  Google Scholar 

  36. 36.

    Misra, A., Poorsolhjouy, P.: Identification of higher-order elastic constants for grain assemblies based upon granular micromechanics. Math. Mech. Complex Syst. 3(3), 285–308 (2015)

    MathSciNet  MATH  Article  Google Scholar 

  37. 37.

    Boutin, C., dell’Isola, F., Giorgio, I., Placidi, L.: Linear pantographic sheets. Asymptotic micro-macro models identification. Math. Mech. Complex Syst. 5(2), 127–162 (2017)

    MathSciNet  MATH  Article  Google Scholar 

  38. 38.

    Misra, A., Poorsolhjouy, P.: Elastic behavior of 2D grain packing modeled as micromorphic media based on granular micromechanics. J. Eng. Mech. 143(1), C4016005 (2017)

    Article  Google Scholar 

  39. 39.

    Turco, E., Golaszewski, M., Cazzani, A., Rizzi, N.L.: Large deformations induced in planar pantographic sheets by loads applied on fibers: experimental validation of a discrete Lagrangian model. Mech. Res. Commun. 76, 51–56 (2016)

    Article  Google Scholar 

  40. 40.

    Riks, E.: The application of Newton’s method to the problem of elastic stability. J. Appl. Mech. Trans. ASME 39 Ser E(4), 1060–1065 (1972)

    ADS  MATH  Article  Google Scholar 

  41. 41.

    Clarke, M.J., Hancock, G.J.: A study of incremental-iterative strategies for non-linear analyses. Int. J. Numer. Methods Eng. 29, 1365–1391 (1990)

    Article  Google Scholar 

  42. 42.

    Turco, E., Caracciolo, P.: Elasto-plastic analysis of Kirchhoff plates by high simplicity finite elements. Comput. Methods Appl. Mech. Eng. 190, 691–706 (2000)

    ADS  MATH  Article  Google Scholar 

  43. 43.

    Turco, E.: Tools for the numerical solution of inverse problems in structural mechanics: review and research perspectives. Eur. J. Environ. Civ. Eng. 21(5), 509–554 (2017)

    MathSciNet  Article  Google Scholar 

  44. 44.

    Turco, E., dell’Isola, F., Rizzi, N.L., Grygoruk, R., Müller, W.H., Liebold, C.: Fiber rupture in sheared planar pantographic sheets: numerical and experimental evidence. Mech. Res. Commun. 76, 86–90 (2016)

    Article  Google Scholar 

  45. 45.

    Turco, E., Rizzi, N.L.: Pantographic structures presenting statistically distributed defects: numerical investigations of the effects on deformation fields. Mech. Res. Commun. 77, 65–69 (2016)

    Article  Google Scholar 

  46. 46.

    Giorgio, I., Della Corte, A., dell’Isola, F.: Dynamics of 1D nonlinear pantographic continua. Nonlinear Dyn. 88(1), 21–31 (2017)

    Article  Google Scholar 

  47. 47.

    Engelbrecht, J., Berezovski, A.: Reflections on mathematical models of deformation waves in elastic microstructured solids. Math. Mech. Complex Syst. 3(1), 43–82 (2015)

    MathSciNet  MATH  Article  Google Scholar 

  48. 48.

    dell’Isola, F., Forest, S.: Second gradient and generalized continua. A workshop held on 12-16 March 2012 in Cisterna di Latina. ZAMM J. Appl. Math. Mech. /Zeitschrift für Angewandte Mathematik und Mechanik 94(5), 367–372 (2014)

    ADS  MathSciNet  Article  Google Scholar 

  49. 49.

    Placidi, L., Giorgio, I., Della Corte, A., Scerrato, D.: Euromech 563 Cisterna di Latina 17-21 March 2014 Generalized continua and their applications to the design of composites and metamaterials: a review of presentations and discussions. Math. Mech. Solids 22(2), 144–157 (2017)

    MATH  Article  Google Scholar 

  50. 50.

    Aristodemo, M.: A high-continuity finite element model for two-dimensional elastic problems. Comput. Struct. 21(5), 987–993 (1985)

    MATH  Article  Google Scholar 

  51. 51.

    Piegl, L., Tiller, W.: The NURBS Book, 2nd edn. Springer, Berlin (1997)

    Google Scholar 

  52. 52.

    Cottrell, J.A., Hughes, T.J.R., Bazilevs, Y.: Isogeometric Analysis: Toward Integration of CAD and FEA. Wiley, Hoboken (2009)

    Google Scholar 

  53. 53.

    Greco, L., Cuomo, M., Contraffatto, L., Gazzo, S.: An efficient blended mixed B-spline formulation for removing membrane locking in plane curved Kirchhoff rods. Comput. Methods Appl. Mech. Eng. 324, 476–511 (2017)

    ADS  MathSciNet  Article  Google Scholar 

  54. 54.

    Greco, L., Cuomo, M.: B-Spline interpolation of Kirchhoff-Love space rods. Comput. Methods Appl. Mech. Eng. 256, 251–269 (2013)

    ADS  MathSciNet  MATH  Article  Google Scholar 

  55. 55.

    dell’Isola, F., Maier, G., Perego, U., Andreaus, U., Esposito, R., Forest, S.: The complete works of Gabrio Piola: Volume I - Commented English Translation. Springer, Berlin (2014)

    Google Scholar 

  56. 56.

    De Masi, A., Merola, I., Presutti, E., Vignaud, Y.: Potts models in the continuum uniqueness and exponential decay in the restricted ensembles. J. Stat. Phys. 133(2), 281–345 (2008)

    ADS  MathSciNet  MATH  Article  Google Scholar 

  57. 57.

    De Masi, A., Merola, I., Presutti, E., Vignaud, Y.: Coexistence of ordered and disordered phases in Potts models in the continuum. J. Stat. Phys. 134(2), 243–306 (2009)

    ADS  MathSciNet  MATH  Article  Google Scholar 

  58. 58.

    Grimmett, G.R.: Correlation inequalities for the Potts model. Math. Mech. Complex Syst. 4(3–4), 327–334 (2016)

    MathSciNet  MATH  Article  Google Scholar 

  59. 59.

    Diyaroglu, C., Oterkus, E., Oterkus, S., Madenci, E.: Peridynamics for bending of beams and plates with transverse shear deformation. Int. J. Solids Struct. 69, 152–168 (2015)

    Article  Google Scholar 

  60. 60.

    De Meo, D., Diyaroglu, C., Zhu, N., Oterkus, E., Siddiq, M.A.: Modelling of stress-corrosion cracking by using peridynamics. Int. J. Hydrog. Energy 41(15), 6593–6609 (2016)

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Emilio Turco.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Communicated by Francesco dell’Isola.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Turco, E., Misra, A., Sarikaya, R. et al. Quantitative analysis of deformation mechanisms in pantographic substructures: experiments and modeling. Continuum Mech. Thermodyn. 31, 209–223 (2019). https://doi.org/10.1007/s00161-018-0678-y

Download citation

Keywords

  • Pantographic sheets
  • Discrete models
  • Nonlinear analysis