Skip to main content
Log in

The use of computational thermodynamics for the determination of surface tension and Gibbs–Thomson coefficient of multicomponent alloys

  • Original Article
  • Published:
Continuum Mechanics and Thermodynamics Aims and scope Submit manuscript

Abstract

The simulation of casting processes demands accurate information on the thermophysical properties of the alloy; however, such information is scarce in the literature for multicomponent alloys. Generally, metallic alloys applied in industry have more than three solute components. In the present study, a general solution of Butler’s formulation for surface tension is presented for multicomponent alloys and is applied in quaternary Al–Cu–Si–Fe alloys, thus permitting the Gibbs–Thomson coefficient to be determined. Such coefficient is a determining factor to the reliability of predictions furnished by microstructure growth models and by numerical computations of solidification thermal parameters, which will depend on the thermophysical properties assumed in the calculations. The Gibbs–Thomson coefficient for ternary and quaternary alloys is seldom reported in the literature. A numerical model based on Powell’s hybrid algorithm and a finite difference Jacobian approximation has been coupled to a Thermo-Calc TCAPI interface to assess the excess Gibbs energy of the liquid phase, permitting liquidus temperature, latent heat, alloy density, surface tension and Gibbs–Thomson coefficient for Al–Cu–Si–Fe hypoeutectic alloys to be calculated, as an example of calculation capabilities for multicomponent alloys of the proposed method. The computed results are compared with thermophysical properties of binary Al–Cu and ternary Al–Cu–Si alloys found in the literature and presented as a function of the Cu solute composition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Perez, M.: Gibbs–Thomson effects in phase transformations. Scr. Mater. 52, 709–712 (2005)

    Article  ADS  Google Scholar 

  2. Zinn, T., Willner, L., Lund, R.: Nanoscopic confinement through self-assembly: crystallization within micellar cores exhibits simple Gibbs–Thomson behavior. Phys. Rev. Lett. 113(238305), 238305 (2014)

    Article  ADS  Google Scholar 

  3. Bouchard, D., Kirkaldy, J.S.: Prediction of dendrite arm spacings in unsteady and steady-state heat flow of unidirectionally solidified binary alloys. Metall. Mater. Trans. B 28B, 651–663 (1997)

    Article  ADS  Google Scholar 

  4. Hunt, J.D., Lu, S.Z.: Numerical modeling of cellular/dendritic array growth: spacing and structure predictions. Metall. Mater. Trans. A 27, 611–623 (1996)

    Article  Google Scholar 

  5. Rappaz, M., Boettinger, W.J.: On dendritic solidification of multicomponent alloys with unequal liquid diffusion coefficients. Acta Mater. 47, 3205–3219 (1999)

    Article  Google Scholar 

  6. Kurz, W., Fisher, J.D.: Dendrite growth at the limit of stability: tip radius and spacing. Acta Metall. 29, 11–20 (1981)

    Article  Google Scholar 

  7. Trivedi, R.: A comparison of theory and experiments. Metall. Mater. Trans. 15A, 977–982 (1984)

    Article  ADS  Google Scholar 

  8. Goulart, P.R., Cruz, K.S., Spinelli, J.E., Ferreira, I.L., Cheung, N., Garcia, A.: Cellular growth during transient directional solidification of hypoeutectic Al–Fe alloys. J. Alloys Compd. 470, 589–599 (2009)

    Article  Google Scholar 

  9. Costa, T.A., Moreira, A.L., Moutinho, D.J., Dias, M., Ferreira, I.L., Spinelli, J.E., Rocha, O.L., Garcia, A.: Growth direction and Si alloying affecting directionally solidified structures of Al–Cu–Si alloys. Mater. Sci. Technol. 31, 1103–1112 (2015)

    Article  Google Scholar 

  10. Gündüz, M., Hunt, J.D.: The measurement of solid-liquid surface energies in the Al–Cu, Al–Si and Pb–Sn systems. Acta Metall. 33, 1651–1672 (1985)

    Article  Google Scholar 

  11. Gündüz, M., Hunt, J.D.: Solid–liquid surface energy in the Al–Mg system. Acta Metall. 37, 1839–1845 (1989)

    Article  Google Scholar 

  12. Marasli, N., Hunt, J.D.: Solid-liquid surface energies in the \(\text{ Al-CuAl }_{2}\), \(\text{ Al-NiAl }_{3}\) and Al–Ti systems. Acta Mater. 44, 1085–1096 (1996)

    Article  Google Scholar 

  13. Keslioglu, K., Marasli, N.: Solid–liquid interfacial energy of the eutectoid \(\beta \) phase in the Al–Zn eutectic system. Mater Sci. Eng. A 369, 294–301 (2004)

    Article  Google Scholar 

  14. Keslioglu, K., Gunduz, M., Kaya, H., Çadirli, E.: Solid–liquid interfacial energy in the Al–Ti system. Mater. Lett. 58, 3067–3073 (2004)

    Article  Google Scholar 

  15. Aksöz, S., Ocak, Y., Marasli, N., Keslioglu, K.: Dependency of the thermal and electrical conductivity on the temperature and composition of Cu in the Al based Al–Cu alloys. Exp. Therm. Fluid Sci. 35, 395–404 (2011)

    Article  Google Scholar 

  16. Butler, J.A.V.: The thermodynamics of the surfaces of solutions. Proc. R. Soc. A 135, 348–375 (1932)

    Article  ADS  MATH  Google Scholar 

  17. Speiser, R., Poirier, D.R., Yeum, K.S.: Surface tension of binary liquid alloys. Scr. Metall. 21, 68–692 (1987)

    Article  Google Scholar 

  18. Yeum, K.S., Speiser, R., Poirier, D.R.: Estimation of the surface tensions of binary liquid alloys. Metall. Trans. 20B, 693–703 (1989)

    Article  Google Scholar 

  19. Picha, R., Vrestal, J., Kroupa, A.: Prediction of alloy surface tension using a thermodynamic database. CALPHAD 28, 141–146 (2004)

    Article  Google Scholar 

  20. Brillo, J., Egry, I., Matsushita, T.: Density and surface tension of liquid ternary Ni–Cu–Fe alloys. Int. J. Thermophys. 27, 1778–1791 (2006)

    Article  ADS  Google Scholar 

  21. Tanaka, T., Lida, T.: Application of a thermodynamic database to the calculation of surface. Tension for iron-base liquid alloys. Steel Res. 65, 21–28 (1994)

    Article  Google Scholar 

  22. Miettinen, J.: Thermodynamic–kinetic model for the simulation of solidification in binary copper alloys and calculation of thermophysical properties. Comput. Mater. Sci. 36, 367–380 (2006)

    Article  Google Scholar 

  23. Jácome, P.A.D., Landim, M.C., Garcia, A., Furtado, A.F., Ferreira, I.L.: The application of computational thermodynamics and a numerical model for the determination of surface tension and Gibbs–Thomson coefficient of aluminum based alloys. Thermochim. Acta 523, 142–149 (2011)

    Article  Google Scholar 

  24. Jácome, P.A.D., Moutinho, D.J., Gomes, L.G., Garcia, A., Ferreira, A.F., Ferreira, I.L.: The application of computational thermodynamics for the determination of surface tension and Gibbs–Thomson coefficient of aluminum ternary alloys. Mater. Sci. Forum 730–732, 871–876 (2013)

    Google Scholar 

  25. Hoar, T.P., Melford, D.A.: The surface tension of binary liquid mixtures: lead + tin and lead + indium alloys. Trans. Faraday Soc. 53, 315–326 (1957)

    Article  Google Scholar 

  26. Gasior, W., Moser, Z., Pstrus, J., Krzyzak, B., Fitzner, K.: Surface tension and thermodynamic properties of liquid Ag–Bi solutions. J. Phase Equilib. 24, 40–49 (2003)

    Article  Google Scholar 

  27. Tanaka, T., Hack, K., Lida, T., Hara, S.: Application of thermodynamic databases to the evaluation of surface tension of molten alloys, salt mixture and oxide mixtures. Z. Metallkd. 87, 380–389 (1996)

    Google Scholar 

  28. Tanaka, T., Hack, K., Hara, S.: Use of thermodynamic data to determine surface tension and viscosity of metallic alloys. MRS Bull. 24, 45–51 (1999)

    Article  Google Scholar 

  29. Kasama, A., Inui, T., Morita, Z.: Measurements of surface tension of liquid Ag–Au and Cu–(Fe, Co, Ni) binary alloys. Jpn. Inst. Met. 42, 1206–1212 (1978)

    Article  Google Scholar 

  30. Hajra, J.P., Lee, H.K., Frohberg, M.G.Z.: Calculation of surface tension of liquid binary systems from the data of the pure components and the thermodynamic infinite dilution values. Z. Metallkde. 82, 603–608 (1991)

    Google Scholar 

  31. Hajra, J.P., Frohberg, M.G.Z., Lee, H.K.: Calculation of surface tension of liquid binary systems from the data of the pure components and the thermodynamic infinite dilution values. Z. Metallkde. 82, 603–608 (1991)

    Google Scholar 

  32. Lee, H.K., Hajra, J.P., Frohberg, M.G.Z.: Calculation of the surface tensions in liquid ternary metallic systems. Z. Metallkde. 83, 638–643 (1992)

    Google Scholar 

  33. Lee, H.K., Frohberg, M.G.Z., Hajra, J.P.: The determination of the surface tensions of liquid iron, nickel and iron–nickel alloys using the electromagnetic oscillating droplet technique. Steel Res. 64, 191–196 (1993)

    Article  Google Scholar 

  34. Tanaka, T., Kitamura, T.: Evaluation of surface tension of molten ionic mixtures, I. A. Back. ISIJ Int. 46, 400–406 (2006)

    Article  Google Scholar 

  35. Nascimento, F.C., Paresque, M.C.C., de Castro, J.A., Jácome, P.A.D., Garcia, A., Ferreira, I.L.: Application of computational thermodynamics to the determination of thermophysical properties as a function of temperature for multicomponent Al-based alloys. Thermochim. Acta 619, 1–7 (2015)

    Article  Google Scholar 

  36. Jácome, P.A.D., Fernandes, M.T., Garcia, A., Ferreira, A.F., Castro, J.A., Ferreira, I.L.: Application of computational thermodynamics to the evolution of surface tension and Gibbs–Thomson Coefficient during multicomponent aluminum alloy solidification. Mater. Sci. Forum 869, 416–422 (2016)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. L. Ferreira.

Additional information

Communicated by Andreas Öchsner.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ferreira, D.J.S., Bezerra, B.N., Collyer, M.N. et al. The use of computational thermodynamics for the determination of surface tension and Gibbs–Thomson coefficient of multicomponent alloys. Continuum Mech. Thermodyn. 30, 1145–1154 (2018). https://doi.org/10.1007/s00161-018-0670-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00161-018-0670-6

Keywords

Navigation