Advertisement

On the capillary bridge between spherical particles of unequal size: analytical and experimental approaches

  • Hien Nho Gia Nguyen
  • Olivier Millet
  • Gérard Gagneux
Original Article

Abstract

This manuscript focuses on the meridional profile of the axisymmetric capillary bridges built between two unequal-sized solid spheres. We propose an original method of resolution of Young Laplace equation based on inverse problem. The shapes of capillary bridges are classified into different categories depending on the geometrical properties, including neck radius, half-filling angle, wetting angle, and distance between two spheres. Practically, all the physical characteristics of capillary bridges, such as the free surface area of the liquid bridge and the inter-particle force, can be calculated easily. In addition, the experimental data provided in this manuscript are compared with analytical results, by matching the theoretical estimation with the data obtained from real experiments using image processing algorithm.

Keywords

Capillary bridge Young–Laplace equation Polydisperse Inter-particle force Experimental measurement 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

References

  1. 1.
    Delaunay, C.: Sur la surface de révolution dont la courbure moyenne est constante. J. Math. Pures Appl. 309–314 (1841)Google Scholar
  2. 2.
    Delllsola, F., Madeo, A., Seppecher, P.: Boundary conditions at fluid-permeable interfaces in porous media: a variational approach. Int. J. Solids Struct. 46(17), 3150–3164 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Duriez, J., Wan, R.: Contact angle mechanical influence in wet granular soils. Acta Geotech. 1–17 (2016)Google Scholar
  4. 4.
    Gagneux, G., Millet, O., Mielniczuk, B., El Youssoufi, M.S.: Theoretical and experimental study of pendular regime in unsaturated granular media. Eur. J. Environ. Civ. Eng. 1–14 (2016)Google Scholar
  5. 5.
    Gagneux, G., Millet, O.: Analytic calculation of capillary bridge properties deduced as an inverse problem from experimental data. Transp. Porous Media 105(1), 117–139 (2014)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Gagneux, G., Millet, O.: An analytical framework for evaluating the cohesion effects of coalescence between capillary bridges. Granul. Matter 18(2), 16 (2016)CrossRefGoogle Scholar
  7. 7.
    Gouin, H.: The wetting problem of fluids on solid surfaces. Part 2: the contact angle hysteresis. Contin. Mech. Thermodyn. 15(6), 597–611 (2003)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Harireche, O., Faramarzi, A., Alani, A.M.: A toroidal approximation of capillary forces in polydisperse granular assemblies. Granul. Matter 15(5), 573–581 (2013)CrossRefGoogle Scholar
  9. 9.
    Kruyt, N., Millet, O.: An analytical theory for the capillary bridge force between spheres. J. Fluid Mech. 812, 129–151 (2017)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Lian, G., Thornton, C., Adams, M.J.: A theoretical study of the liquid bridge forces between two rigid spherical bodies. J. Colloid Interface Sci. 161(1), 138–147 (1993)ADSCrossRefGoogle Scholar
  11. 11.
    Lievano, D., Velankar, S., McCarthy, J.J.: The rupture force of liquid bridges in two and three particle systems. Powder Technol. 313((Supplement C)), 18–26 (2017)CrossRefGoogle Scholar
  12. 12.
    Mayer, R.P., Stowe, R.A.: Nodoids and toroids: comparison of two geometries for the meniscus profile of a wetting liquid between two touching isolated spheres and extensions to the model of a collection of packed spheres. J. Colloid Interface Sci. 285(2), 781–788 (2005)ADSCrossRefGoogle Scholar
  13. 13.
    Mielniczuk, B., Millet, O., Gagneux, G., El Youssoufi, M.S.: Properties of pendular liquid bridges determined on delaunays roulettes. In EPJ Web of Conferences, vol. 140, pp. 09042. EDP Sciences (2017)Google Scholar
  14. 14.
    Muguruma, Y., Tanaka, T., Tsuji, Y.: Numerical simulation of particulate flow with liquid bridge between particles (simulation of centrifugal tumbling granulator). Powder Technol. 109(1), 49–57 (2000)CrossRefGoogle Scholar
  15. 15.
    Murase, K., Mochida, T., Sagawa, Y., Sugama, H.: Estimation on the strength of a liquid bridge adhered to three spheres. Adv. Powder Technol. 19(4), 349–367 (2008)CrossRefGoogle Scholar
  16. 16.
    Placidi, L., Dell’Isola, F., Ianiro, N., Sciarra, G.: Variational formulation of pre-stressed solid-fluid mixture theory, with an application to wave phenomena. Eur. J. Mech. A Solids 27(4), 582–606 (2008)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Qiang-Nian, L., Jia-Qi, Z., Feng-Xi, Z.: Exact solution for capillary bridges properties by shooting method. Z. Naturfor. A 72(4), 315–320 (2017)ADSCrossRefGoogle Scholar
  18. 18.
    Radl, S., Kalvoda, E., Glasser, B.J., Khinast, J.G.: Mixing characteristics of wet granular matter in a bladed mixer. Powder Technol. 200(3), 171–189 (2010)CrossRefGoogle Scholar
  19. 19.
    Rubinstein, B.Y., Fel, L.G.: Theory of axisymmetric pendular rings. J. Colloid Interface Sci. 417, 37–50 (2014)ADSCrossRefGoogle Scholar
  20. 20.
    Soulie, F., Cherblanc, F., El Youssoufi, M.S., Saix, C.: Influence of liquid bridges on the mechanical behaviour of polydisperse granular materials. Int. J. Numer. Anal. Methods Geomech. 30(3), 213–228 (2006)CrossRefzbMATHGoogle Scholar
  21. 21.
    Taubin, G.: Estimation of planar curves, surfaces, and nonplanar space curves defined by implicit equations with applications to edge and range image segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 11, 1115–1138 (1991)CrossRefGoogle Scholar
  22. 22.
    Valsamis, J.-B., Mastrangeli, M., Lambert, P.: Vertical excitation of axisymmetric liquid bridges. Eur. J. Mech. B Fluids 38, 47–57 (2013)ADSCrossRefGoogle Scholar
  23. 23.
    Willett, C.D., Adams, M.J., Johnson, S.A., Seville, J.P.: Capillary bridges between two spherical bodies. Langmuir 16(24), 9396–9405 (2000)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Hien Nho Gia Nguyen
    • 1
  • Olivier Millet
    • 1
  • Gérard Gagneux
    • 1
  1. 1.LaSIE, UMR-CNRS 7356Université de La RochelleLa Rochelle Cedex 1France

Personalised recommendations