The Biot coefficient for a low permeability heterogeneous limestone

  • A. P. S. Selvadurai
Original Article


This paper presents the experimental and theoretical developments used to estimate the Biot coefficient for the heterogeneous Cobourg Limestone, which is characterized by its very low permeability. The coefficient forms an important component of the Biot poroelastic model that is used to examine coupled hydro-mechanical and thermo-hydro-mechanical processes in the fluid-saturated Cobourg Limestone. The constraints imposed by both the heterogeneous fabric and its extremely low intact permeability [\(K \in (10^{-23},10^{-20})~\hbox {m}^{2}\)] require the development of alternative approaches to estimate the Biot coefficient. Large specimen bench-scale triaxial tests (150 mm diameter and 300 mm long) that account for the scale of the heterogeneous fabric are complemented by results for the volume fraction-based mineralogical composition derived from XRD measurements. The compressibility of the solid phase is based on theoretical developments proposed in the mechanics of multi-phasic elastic materials. An appeal to the theory of multi-phasic elastic solids is the only feasible approach for examining the compressibility of the solid phase. The presence of a number of mineral species necessitates the use of the theories of Voigt, Reuss and Hill along with the theories proposed by Hashin and Shtrikman for developing bounds for the compressibility of the multi-phasic geologic material composing the skeletal fabric. The analytical estimates for the Biot coefficient for the Cobourg Limestone are compared with results for similar low permeability rocks reported in the literature.


Biot coefficient Skeletal compressibility Solid material compressibility Voigt-Reuss-Hill estimates Hashin-Rosen estimates Cobourg limestone 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



  1. 1.
    Selvadurai, A.P.S.: Geomechanical characterization of the Cobourg limestone. In: Nuclear Waste Management Organization Technical Report TR-2018 (2018)Google Scholar
  2. 2.
    Biot, M.A.: General theory of three-dimensional consolidation. J. Appl. Phys. 12, 155–164 (1941)ADSCrossRefzbMATHGoogle Scholar
  3. 3.
    Terzaghi, K.: Die Berechnung der Durchlassigkeitsziffer des Tones aus Dem Verlauf der Hydrodynamischen Spannungserscheinungen. Akad Wissensch Wien Sitzungsber Mathnaturwissensch Klasse IIa 142, 125–138 (1923)Google Scholar
  4. 4.
    Coussy, O.: Poromechanics. Wiley, New York (2004)zbMATHGoogle Scholar
  5. 5.
    Selvadurai, A.P.S.: The analytical method in geomechanics. Appl. Mech. Rev. 60, 87–106 (2007)ADSCrossRefGoogle Scholar
  6. 6.
    Cheng, A.H.-D.: Poroelasticity. Springer, Berlin (2015)Google Scholar
  7. 7.
    Selvadurai, A.P.S., Suvorov, A.P.: Thermo-Poroelasticity and Geomechanics. Cambridge University Press, Cambridge (2016)Google Scholar
  8. 8.
    Selvadurai, A.P.S., Nguyen, T.S.: Computational modeling of isothermal consolidation of fractured porous media. Comput. Geotech. 17, 39–73 (1995)CrossRefGoogle Scholar
  9. 9.
    Selvadurai, A.P.S., Najari, M.: The thermos-hydro-mechanical behaviour of the argillaceous Cobourg Limestone. J. Geophys. Res. Solid Earth (2017). Google Scholar
  10. 10.
    Selvadurai, A.P.S., Suvorov, A.P., Selvadurai, A.P.: Thermo-hydro-mechanical processes in fractured rock formations during a glacial advance. Geosci. Model Dev. 8, 2167–2185 (2015)ADSCrossRefGoogle Scholar
  11. 11.
    Cowin, S.C.: Bone Mechanics Handbook. Taylor and Francis, New York (2001)Google Scholar
  12. 12.
    Giorgio, I., Andreaus, U., Scerrato, D., dell’Isola, F.: A visco-poroelastic model of functional adaptation in bones reconstructed with bio-resorbable materials. Biomech. Model. Mechanobiol. 15(5), 1325–1343 (2016)CrossRefGoogle Scholar
  13. 13.
    Rosi, G., Placidi, L., dell’Isola, F.: “Fast” and “slow” pressure waves electrically induced by nonlinear coupling in Biot-type porous medium saturated by a nematic liquid crystal. Zeitschrift für angewandte Mathematik und Physik 68(2), 51 (2017). ADSMathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Pence, T.J.: On the formulation of boundary value problems with incompressible constituent constraints in finite deformation poroelasticity. Math. Model. Meth. Appl. Sci. 35, 1756–1783 (2012)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Selvadurai, A.P.S., Suvorov, A.P.: Coupled hydro-mechanical effects in a poro-hyperelastic material. J. Mech. Phys. Solids 91, 311–333 (2016)ADSMathSciNetCrossRefGoogle Scholar
  16. 16.
    Selvadurai, A.P.S., Suvorov, A.P.: On the inflation of poro-hyperelastic annuli. J. Mech. Phys. Solids 107, 229–252 (2017)ADSMathSciNetCrossRefGoogle Scholar
  17. 17.
    Suvorov, A.P., Selvadurai, A.P.S.: On poro-hyperelastic shear. J. Mech. Phys. Solids 96, 445–459 (2016)ADSMathSciNetCrossRefGoogle Scholar
  18. 18.
    Bruggeman, J.R., Zanger, C.N. and Brahtz, J.H.A.: Memorandum to Chief Designing Engineer: Notes on analytical soil mechanics, US Dept. of the Interior, Tech. Memorandum, No. 592 (1939)Google Scholar
  19. 19.
    Skempton, A.W.: The pore pressure coefficients \(A\) and \(B\). Géotechnique 4, 143–147 (1954)CrossRefGoogle Scholar
  20. 20.
    Bishop, A.W.: Soils and soft rocks as engineering materials. Inaug. Lect. Imp. Coll. Sci. Tech. 6, 289–313 (1966)Google Scholar
  21. 21.
    Selvadurai, A.P.S., Letendre, A., Hekimi, B.: Axial flow hydraulic pulse testing of an argillaceous limestone. Env. Earth Sci. 64, 2047–2085 (2011)CrossRefGoogle Scholar
  22. 22.
    Selvadurai, A.P.S., Jenner, L.: Radial flow permeability testing of an argillaceous limestone. Ground Water 51, 100–107 (2013)CrossRefGoogle Scholar
  23. 23.
    Selvadurai, A.P.S., Najari, M.: Isothermal permeability of the Argillaceous Cobourg Limestone. Oil and Gas Sci. Tech. (2016).
  24. 24.
    Selvadurai, A.P.S., Glowacki, A.: Stress-induced permeability alterations in an argillaceous limestone. Rock Mech. Rock Eng 50, 1079–1096 (2017)ADSCrossRefGoogle Scholar
  25. 25.
    Carmichael, R.S.: Practical Handbook of Physical Properties of Rocks and Minerals. CRC Press, Boca Raton (1990)Google Scholar
  26. 26.
    Berge, P.A., Berryman, J.G.: Realizability of negative pore compressibility in poroelastic composites. J. Appl. Mech 62, 1053–1062 (1995)ADSCrossRefGoogle Scholar
  27. 27.
    Redfern, S.A.T., Angel, R.J.: High-pressure behaviour and equation of state of calcite, \(\text{ CaCO }_{3}\). Contrib. Mineral Petrol. 134, 102–106 (1999)ADSCrossRefGoogle Scholar
  28. 28.
    Vanorio, T., Prasad, M., Nur, A.: Elastic properties of dry clay mineral aggregates, suspensions and sandstones. Geoph. J. Int. 155, 319–326 (2003)ADSCrossRefGoogle Scholar
  29. 29.
    Lin, C.-C.: Elasticity of calcite: thermal evolution. Phys. Chem. Miner. 40, 157–166 (2013)ADSCrossRefGoogle Scholar
  30. 30.
    Vilks, P., Miller, N.H.: Evaluation of Experimental Protocols for Characterizing Diffusion in Sedimentary Rocks, Nuclear Waste Management Division Report TR-2007-11, Toronto. Atomic Energy of Canada Limited, ON (2007)Google Scholar
  31. 31.
    Selvadurai, A.P.S., Najari, M.: Laboratory-scale hydraulic pulse testing: influence of air fraction in the fluid-filled cavity in the estimation of permeability. Geotechnique 65, 124–134 (2015)CrossRefGoogle Scholar
  32. 32.
    Detournay, E., Cheng, A.H.-D.: Comprehensive rock engineering: Principles, practice and projects. In: Hudson, J.A. (ed.) Fundamentals of Poroelasticity, vol. 1, pp. 113–171. Pergamon Press, Oxford (1993)Google Scholar
  33. 33.
    Wang, H.F.: Theory of Linear Poroelasticity with Applications to Geomechanics and Hydrogeology. Princeton University Press, Princeton (2000)Google Scholar
  34. 34.
    Lion, M., Skoczylas, F., Ledésert, B.: Determination of the main hydraulic and poro-elastic properties of a limestone from Bourgogne, France. Int. J. Rock Mech. Min. Sci. 41, 915–925 (2004)CrossRefGoogle Scholar
  35. 35.
    Wang, Y., Agostini, F., Skoczylas, F., Jeannin, L., Portier, É.: Experimental study of the gas permeability and bulk modulus of tight sandstone and changes to its pore structure. Int. J. Rock. Mech. Min. Sci. 91, 203–209 (2017)Google Scholar
  36. 36.
    Armand, G., Conil, N., Talandier, J., Seyedi, D.M.: Fundamental aspects of the hydromechanical behaviour of the Callovo–Oxfordian claystone: from experimental studies to model calibration and validation. Comp. Geotech. 85, 277–286 (2017)CrossRefGoogle Scholar
  37. 37.
    Selvadurai, A.P.S., Carnaffan, P.: A transient pressure pulse method for the measurement of permeability of a cement grout, Can. J. Civil Eng. 24, 489–502 (1997)Google Scholar
  38. 38.
    Selvadurai, A.P.S.: Partial Differential Equations in Mechanics, Vol. 1. Fundamentals, Laplace’s Equation, the Diffusion Equation, the Wave Equation. Springer, Berlin (2000)Google Scholar
  39. 39.
    Carslaw, H.S., Jaeger, J.C.: Conduction of Heat in Solids. Oxford Science Publications, Oxford (1959)zbMATHGoogle Scholar
  40. 40.
    Selvadurai, A.P.S.: Influence of residual hydraulic gradients on decay curves for one-dimensional hydraulic pulse tests. Geophys. J. Int. 177, 1357–1365 (2009)ADSCrossRefGoogle Scholar
  41. 41.
    Voigt, W.: Lehrbuch der Kristallphysik. Teubner, Leipzig, B.G (1928)zbMATHGoogle Scholar
  42. 42.
    Reuss, A.: Berechnung der Fließgrenze von Mischkristallen auf Grund der Plastizitätsbedingung für Einkristalle. J. Appl. Math. Mech 9, 49–58 (1929)zbMATHGoogle Scholar
  43. 43.
    Hill, R.: The elastic behaviour of a crystalline aggregate. Proc. Phys. Soc. 65, 349–354 (1952)ADSCrossRefGoogle Scholar
  44. 44.
    Hill, R.: Self-consistent mechanics of composite materials. J. Mech. Phys. Solids 13, 213–222 (1965)ADSCrossRefGoogle Scholar
  45. 45.
    Hashin, Z., Shtrikman, S.: A variational approach to the elastic behavior of multiphase minerals. J. Mech. Phys. Solids 11, 127–140 (1963)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  46. 46.
    Hashin, Z.: The elastic moduli of heterogeneous materials. J. Appl. Mech. 29, 143–150 (1962)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  47. 47.
    Walpole, L.J.: On bounds for the overall elastic moduli of inhomogeneous Systems. J. Mech. Phys. Solids 14, 151–62 (1966)ADSCrossRefzbMATHGoogle Scholar
  48. 48.
    Hale, D.K.: The mechanical properties of composite materials. J. Mat. Sci. 11, 2105–2141 (1976)ADSCrossRefGoogle Scholar
  49. 49.
    Christensen, R.M.: Mechanics of Composite Materials. Wiley, New York (1979)Google Scholar
  50. 50.
    Francfort, G.A., Murat, F.: Homogenization and optimal bounds in linear elasticity. Arch. Rat. Mech. Anal. 94, 307–334 (1986)MathSciNetCrossRefzbMATHGoogle Scholar
  51. 51.
    Sisodia, P., Verma, M.P.: Polycrystalline elastic moduli of some hexagonal and tetragonal materials. Phys. Stat. Sol. 122, 525–534 (1990)ADSCrossRefGoogle Scholar
  52. 52.
    Ju, J.W., Chen, T.M.: Micromechanics and effective moduli of elastic composites containing randomly dispersed ellipsoidal inhomogeneities. Acta Mech. 103, 103–121 (1994a)MathSciNetCrossRefzbMATHGoogle Scholar
  53. 53.
    Ju, J.W., Chen, T.M.: Effective elastic moduli of two-phase composites containing randomly dispersed spherical inhomogeneities. Acta Mech. 103, 123–144 (1994b)MathSciNetCrossRefzbMATHGoogle Scholar
  54. 54.
    Nemat-Nasser, S., Hori, M.: Micromechanics: Overall Properties of Heterogeneous Materials, \(2^{{\rm nd}}\) Ed., North-Holland (1999)Google Scholar
  55. 55.
    Torquato, S., Yeong, C.L.Y., Rintoul, M.D., Milius, D.L., Aksay, I.A.: Elastic properties and structure of interpenetrating Boron Carbide/Aluminum multiphase composites. J. Am. Ceram. Soc. 82, 1263–1268 (1999)CrossRefGoogle Scholar
  56. 56.
    Lin, P.J., Ju, J.W.: Effective elastic moduli of three-phase composites with randomly located and interacting spherical particles of distinct properties. Acta Mech. 208, 11–26 (2009)CrossRefzbMATHGoogle Scholar
  57. 57.
    Suvorov, A.P., Selvadurai, A.P.S.: Macroscopic constitutive equations of thermo-poroviscoelasticity derived using eigenstrains. J. Mech. Phys. Solids 58, 1461–1473 (2010)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  58. 58.
    Avseth, P., Mukerji, T., Mavko, G.: Quantitative Seismic Interpretation: Applying Rock Physics Tools to Reduce Interpretation Risk. Cambridge University Press, Cambridge (2005)CrossRefGoogle Scholar
  59. 59.
    Mavko, G., Mukerji, T.: Dvorkin: The Rock Physics Handbook. Tools for Seismic Analysis of Porous Media. Cambridge University Press, Cambridge (2009)CrossRefGoogle Scholar
  60. 60.
    Selvadurai, A.P.S.: Stationary damage modelling of poroelastic contact. Int. J. Solids. Struct. 41, 2043–2064 (2004)CrossRefzbMATHGoogle Scholar
  61. 61.
    Selvadurai, A.P.S., Suvorov, A.P.: Boundary heating of poroelastic and poro-elastoplastic spheres. Proc. R. Soc. A: Math., Phys. Engng Sci. 468(2145), 2779–2806 (2012)ADSCrossRefzbMATHGoogle Scholar
  62. 62.
    Selvadurai, A.P.S., Suvorov, A.P.: Thermo-poromechanics of a fluid-filled cavity in a fluid-saturated geomaterial. Proc. R. Soc. A: Math. Phys., Engng Sci 470(2163), 20130634 (2014)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  63. 63.
    Selvadurai, A.P.S., Selvadurai, P.A.: Surface permeability tests: experiments and modelling for estimating effective permeability. Proc. R. Soc. A: Math. Phys., Engng Sci. 466(2122), 2819–2846 (2010)ADSCrossRefGoogle Scholar
  64. 64.
    Selvadurai, P.A., Selvadurai, A.P.S.: On the effective permeability of a heterogeneous porous medium: the role of the geometric mean. Phil. Mag. 94, 2318–2338 (2014)ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Civil Engineering and Applied MechanicsMcGill UniversityMontréalCanada

Personalised recommendations