Revealing the physical insight of a length-scale parameter in metamaterials by exploiting the variational formulation

Original Article
  • 14 Downloads

Abstract

For micro-architectured materials with a substructure, called metamaterials, we can realize a direct numerical simulation in the microscale by using classical mechanics. This method is accurate, however, computationally costly. Instead, a solution of the same problem in the macroscale is possible by means of the generalized mechanics. In this case, no detailed modeling of the substructure is necessary; however, new parameters emerge. A physical interpretation of these metamaterial parameters is challenging leading to a lack of experimental strategies for their determination. In this work, we exploit the variational formulation based on action principles and obtain a direct relation between a parameter used in the kinetic energy and a metamaterial parameter in the case of a viscoelastic model.

Keywords

Mechanics Metamaterial Length scale parameter Variational formulation Principle of least action 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

References

  1. 1.
    Abali, B.E: Thermodynamically compatible modeling, determination of material parameters, and numerical analysis of nonlinear rheological materials. PhD thesis, Technische Universität Berlin, Institute of Mechanics. epubli (2014)Google Scholar
  2. 2.
    Abali, B.E.: Computational Reality, Solving Nonlinear and Coupled Problems in Continuum Mechanics. Advanced Structured Materials. Springer, Berlin (2017)MATHGoogle Scholar
  3. 3.
    Abali, B.E., Müller, W.H., dell’Isola, F.: Theory and computation of higher gradient elasticity theories based on action principles. Arch. Appl. Mech. 87(9), 1495–1510 (2017)ADSCrossRefGoogle Scholar
  4. 4.
    Abali, B.E., Müller, W.H., Eremeyev, V.A.: Strain gradient elasticity with geometric nonlinearities and its computational evaluation. Mech. Adv. Mater. Mod. Process. 1, 4 (2015)CrossRefGoogle Scholar
  5. 5.
    Abali, B.E., Wu, C.-C., Müller, W.H.: An energy-based method to determine material constants in nonlinear rheology with applications. Contin. Mech. Thermodyn. 28(5), 1221–1246 (2016)ADSMathSciNetCrossRefMATHGoogle Scholar
  6. 6.
    Auffray, N., dell’Isola, F., Eremeyev, V., Madeo, A., Rosi, G.: Analytical continuum mechanics à la hamilton-piola least action principle for second gradient continua and capillary fluids. Math. Mech. Solids 20(4), 375–417 (2015)MathSciNetCrossRefMATHGoogle Scholar
  7. 7.
    Bilotta, A., Formica, G., Turco, E.: Performance of a high-continuity finite element in three-dimensional elasticity. Int. J. Numer. Methods Biomed. Eng. 26(9), 1155–1175 (2010)CrossRefMATHGoogle Scholar
  8. 8.
    Brezny, R., Green, D.: Characterization of edge effects in cellular materials. J. Mater. Sci. 25(11), 4571–4578 (1990)ADSCrossRefGoogle Scholar
  9. 9.
    Chen, C., Fleck, N.: Size effects in the constrained deformation of metallic foams. J. Mech. Phys. Solids 50(5), 955–977 (2002)ADSCrossRefMATHGoogle Scholar
  10. 10.
    Chen, C., Shi, Y., Zhang, Y.S., Zhu, J., Yan, Y.: Size dependence of young’s modulus in ZnO nanowires. Phys. Rev. Lett. 96(7), 075505 (2006)ADSCrossRefGoogle Scholar
  11. 11.
    De Meo, D., Diyaroglu, C., Zhu, N., Oterkus, E., Siddiq, M.A.: Modelling of stress-corrosion cracking by using peridynamics. Int. J. Hydrogen Energy 41(15), 6593–6609 (2016)CrossRefGoogle Scholar
  12. 12.
    dell’Isola, F., Andreaus, U., Placidi, L.: At the origins and in the vanguard of peridynamics, non-local and higher-gradient continuum mechanics: an underestimated and still topical contribution of Gabrio Piola. Math. Mech. Solids 20, 887–928 (2014)MathSciNetCrossRefMATHGoogle Scholar
  13. 13.
    dell’Isola, F., Andreaus, U., Placidi, L.: At the origins and in the vanguard of peridynamics, non-local and higher-gradient continuum mechanics: an underestimated and still topical contribution of Gabrio Piola. Math. Mech. Solids 20(8), 887–928 (2015)MathSciNetCrossRefMATHGoogle Scholar
  14. 14.
    dell’Isola, F., Sciarra, G., Vidoli, S.: Generalized Hooke’s law for isotropic second gradient materials. Proc. R. Soc. A Math. Phys. Eng. Sci. 465, 2177–2196 (2009)ADSMathSciNetCrossRefMATHGoogle Scholar
  15. 15.
    Diyaroglu, C., Oterkus, E., Oterkus, S., Madenci, E.: Peridynamics for bending of beams and plates with transverse shear deformation. Int. J. Solids Struct. 69, 152–168 (2015)CrossRefGoogle Scholar
  16. 16.
    Eringen, A.: Theory of micropolar elasticity. Technical report, DTIC Document (1967)Google Scholar
  17. 17.
    Flügge, W.: Viscoelasticity. Springer, Berlin (1975)CrossRefMATHGoogle Scholar
  18. 18.
    Giorgio, I.: Numerical identification procedure between a micro-cauchy model and a macro-second gradient model for planar pantographic structures. Z. Angew. Math. Phys. 67(4), 95 (2016)MathSciNetCrossRefMATHGoogle Scholar
  19. 19.
    Gruber, P.A., Böhm, J., Onuseit, F., Wanner, A., Spolenak, R., Arzt, E.: Size effects on yield strength and strain hardening for ultra-thin Cu films with and without passivation: a study by synchrotron and bulge test techniques. Acta Mater. 56(10), 2318–2335 (2008)CrossRefGoogle Scholar
  20. 20.
    Gurtin, M.E., Reddy, B.D.: Alternative formulations of isotropic hardening for mises materials, and associated variational inequalities. Continuum Mech. Thermodyn. 21(3), 237–250 (2009)ADSMathSciNetCrossRefMATHGoogle Scholar
  21. 21.
    Hilbert, D.: (transl. by E. J. Townsend), The foundations of geometry. The Open Court Publishing Co (1902)Google Scholar
  22. 22.
    Javili, A., dell’Isola, F., Steinmann, P.: Geometrically nonlinear higher-gradient elasticity with energetic boundaries. J. Mech. Phys. Solids 61(12), 2381–2401 (2013)ADSMathSciNetCrossRefMATHGoogle Scholar
  23. 23.
    Jing, G., Duan, H., Sun, X., Zhang, Z., Xu, J., Li, Y., Wang, J., Yu, D.: Surface effects on elastic properties of silver nanowires: contact atomic-force microscopy. Phys. Rev. B 73(23), 235409 (2006)ADSCrossRefGoogle Scholar
  24. 24.
    Kesler, O., Gibson, L.J.: Size effects in metallic foam core sandwich beams. Mater. Sci. Eng. A 326(2), 228–234 (2002)CrossRefGoogle Scholar
  25. 25.
    Lam, D., Yang, F., Chong, A., Wang, J., Tong, P.: Experiments and theory in strain gradient elasticity. J. Mech. Phys. Solids 51(8), 1477–1508 (2003)ADSCrossRefMATHGoogle Scholar
  26. 26.
    Lanczos, C.: The Variational Principles of Mechanics. Courier Corporation, New York (2012)MATHGoogle Scholar
  27. 27.
    Lazar, M.: Irreducible decomposition of strain gradient tensor in isotropic strain gradient elasticity. J. Appl. Math. Mech./Z. Angew. Math. Mech. 96(11), 1291–1305 (2016)MathSciNetGoogle Scholar
  28. 28.
    Liebold, C., Müller, W.: Strain maps on statically bend (001) silicon microbeams using afm-integrated raman spectroscopy. Arch. Appl. Mech. 85(9–10), 1353–1362 (2015)ADSCrossRefGoogle Scholar
  29. 29.
    Liebold, C., Müller, W.H.: Applications of strain gradient theories to the size effect in submicro-structures incl. experimental analysis of elastic material parameters. Bull. TICMI 19(1), 45–55 (2015)MathSciNetMATHGoogle Scholar
  30. 30.
    Lubarda, V.A.: On the recoverable and dissipative parts of higher order stresses in strain gradient plasticity. Int. J. Plast. 78, 26–43 (2016)CrossRefGoogle Scholar
  31. 31.
    McFarland, A.W., Colton, J.S.: Role of material microstructure in plate stiffness with relevance to microcantilever sensors. J. Micromech. Microeng. 15(5), 1060–1067 (2005)ADSCrossRefGoogle Scholar
  32. 32.
    Mindlin, R.D.: Micro-structure in linear elasticity. Arch. Ration. Mech. Anal. 16(1), 51–78 (1964)MathSciNetCrossRefMATHGoogle Scholar
  33. 33.
    Mindlin, R.D., Tiersten, H.F.: Effects of couple-stresses in linear elasticity. Arch. Ration. Mech. Anal. 11, 415–448 (1962).  https://doi.org/10.1007/BF00253946 MathSciNetCrossRefMATHGoogle Scholar
  34. 34.
    Morrison, J.: The yield of mild steel with particular reference to the effect of size of specimen. Proc. Inst. Mech. Eng. 142(1), 193–223 (1939)CrossRefGoogle Scholar
  35. 35.
    Neff, P., Ghiba, I.-D., Madeo, A., Placidi, L., Rosi, G.: A unifying perspective: the relaxed linear micromorphic continuum. Continuum Mech. Thermodyn. 26(5), 639–681 (2014)ADSMathSciNetCrossRefMATHGoogle Scholar
  36. 36.
    Neuenschwander, D.E.: Emmy Noether’s Wonderful Theorem. JHU Press, Baltimore (2017)MATHGoogle Scholar
  37. 37.
    Niiranen, J., Balobanov, V., Kiendl, J., Hosseini, S.: Variational formulations, model comparisons and numerical methods for Euler–bernoulli micro-and nano-beam models. Math. Mech. Solids (2017).  https://doi.org/10.1177/1081286517739669
  38. 38.
    Noether, E.: Invariant variation problems. Transp. Theory Stat. Phys. 1(3), 186–207 (1971)ADSMathSciNetCrossRefMATHGoogle Scholar
  39. 39.
    Oterkus, S. , Madenci, E.: Fully coupled thermomechanical analysis of fiber reinforced composites using peridynamics. In: 55th AIAA/ASMe/ASCE/AHS/SC Structures, Structural Dynamics, and Materials Conference-SciTech Forum and Exposition 2014 (2014)Google Scholar
  40. 40.
    Pideri, C., Seppecher, P.: A homogenization result for elastic material reinforced periodically with high rigidity elastic fibres. C. R. Acad. Sci. IIB Mech. Phys. Astron. 8(324), 475–481 (1997)ADSMATHGoogle Scholar
  41. 41.
    Placidi, L., Andreaus, U., Della Corte, A., Lekszycki, T.: Gedanken experiments for the determination of two-dimensional linear second gradient elasticity coefficients. Z. Angew. Math. Phys. 66(6), 3699–3725 (2015)MathSciNetCrossRefMATHGoogle Scholar
  42. 42.
    Polizzotto, C.: A unified residual-based thermodynamic framework for strain gradient theories of plasticity. Int. J. Plast. 27(3), 388–413 (2011)CrossRefMATHGoogle Scholar
  43. 43.
    Polizzotto, C.: A second strain gradient elasticity theory with second velocity gradient inertia-part i: constitutive equations and quasi-static behavior. Int. J. Solids Struct. 50(24), 3749–3765 (2013a)CrossRefGoogle Scholar
  44. 44.
    Polizzotto, C.: A second strain gradient elasticity theory with second velocity gradient inertia-part ii: dynamic behavior. Int. J. Solids Struct. 50(24), 3766–3777 (2013b)CrossRefGoogle Scholar
  45. 45.
    Queiruga, A.F., Moridis, G.: Numerical experiments on the convergence properties of state-based peridynamic laws and influence functions in two-dimensional problems. Comput. Methods Appl. Mech. Eng. 322, 97–122 (2017)ADSMathSciNetCrossRefGoogle Scholar
  46. 46.
    Reiher, J. C., Giorgio, I., and Bertram, A.: Finite-element analysis of polyhedra under point and line forces in second-strain gradient elasticity. J. Eng. Mech. 143(2), 04016112 (2016)Google Scholar
  47. 47.
    Scerrato, D., Zhurba Eremeeva, I.A., Lekszycki, T., Rizzi, N.L.: On the effect of shear stiffness on the plane deformation of linear second gradient pantographic sheets. J. Appl. Math. Mech./Z. Angew. Math. Mech. 96(11), 1268–1279 (2016)MathSciNetGoogle Scholar
  48. 48.
    Silling, S.A.: Reformulation of elasticity theory for discontinuities and long-range forces. J. Mech. Phys. Solids 48(1), 175–209 (2000)ADSMathSciNetCrossRefMATHGoogle Scholar
  49. 49.
    Silling, S.A., Lehoucq, R.B.: Convergence of peridynamics to classical elasticity theory. J. Elast. 93(1), 13–37 (2008)MathSciNetCrossRefMATHGoogle Scholar
  50. 50.
    Steigmann, D.J., dell’Isola, F.: Mechanical response of fabric sheets to three-dimensional bending, twisting, and stretching. Acta. Mech. Sin. 31(3), 373–382 (2015)ADSMathSciNetCrossRefMATHGoogle Scholar
  51. 51.
    Suiker, A., Chang, C.: Application of higher-order tensor theory for formulating enhanced continuum models. Acta Mech. 142(1–4), 223–234 (2000)CrossRefMATHGoogle Scholar
  52. 52.
    Taylor, M., Steigmann, D.J.: A two-dimensional peridynamic model for thin plates. Math. Mech. Solids 20(8), 998–1010 (2015)MathSciNetCrossRefMATHGoogle Scholar
  53. 53.
    Thai, H.-T., Vo, T.P., Nguyen, T.-K., Kim, S.-E.: A review of continuum mechanics models for size-dependent analysis of beams and plates. Compos. Struct. 177, 196–219 (2017)CrossRefGoogle Scholar
  54. 54.
    Toupin, R.A.: Theories of elasticity with couple-stress. Arch. Ration. Mech. Anal. 17(2), 85–112 (1964)MathSciNetCrossRefMATHGoogle Scholar
  55. 55.
    Turco, E., Golaszewski, M., Cazzani, A., Rizzi, N.L.: Large deformations induced in planar pantographic sheets by loads applied on fibers: experimental validation of a discrete Lagrangian model. Mech. Res. Commun. 76, 51–56 (2016)CrossRefGoogle Scholar
  56. 56.
    Yang, J., Lakes, R.S.: Experimental study of micropolar and couple stress elasticity in compact bone in bending. J. Biomech. 15(2), 91–98 (1982)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Chair of Continuum Mechanics and Constitutive Theory, Institute of MechanicsTechnische Universität BerlinBerlinGermany

Personalised recommendations