Skip to main content
Log in

A note on a derivative scheme for the finite volume method applied to incompressible viscous fluid

  • Short Communication
  • Published:
Continuum Mechanics and Thermodynamics Aims and scope Submit manuscript

Abstract

In the last two decades, there have been significant advances in application of the finite volume method to a wide spectrum of physical phenomena, ranging from heat transfer and compressible/incompressible fluid flow to solid mechanics. The finite volume method requires for different applications similar approximations of derivatives at the control surface. Within this framework, this study discusses a derivative scheme used in the finite volume method for incompressible viscous fluids. The numerical scheme is based on an implicit technique associated with the SIMPLE method to attain pressure–velocity coupling. The present work addresses simulation of two-dimensional flows in plane channels with and without contractions. The results show velocities and pressure fields with good agreement when compared to analytical results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. Khan, M.M.K., Hassan, N.M.S.: Thermofluid Modelling for Energy Efficiency Applications. Academic, London (2016)

    Google Scholar 

  2. Yu, H.-Y., Zhang, H.-C., Guo, Y.-Y., Tan, H.-P., Li, Y., Xie, G.-N.: Thermodynamic analysis of shark skin texture surfaces for microchannel flow. Contin. Mech. Thermodyn. 28(5), 1361–1371 (2016)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  3. Hong, B.Z., Keong, L.K., Shariff, A.M.: CFD modelling of most probable bubble nucleation rate from binary mixture with estimation of components’ mole fraction in critical cluster. Contin. Mech. Thermodyn. 28(3), 655–668 (2016)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  4. Ahn, J., Sparrow, E.M., Gorman, J.M., Minkowycz, W.J.: Investigation of coupled systems consisting of fluid movers and heat-exchange devices. Numer. Heat Transf. Part A Appl. 70(9), 964–979 (2016)

    Article  ADS  Google Scholar 

  5. Perão, L.H., Zdanski, P.S.B., Vaz Jr., M.: Conjugate heat transfer in channels with heat conducting inclined fins. Numer. Heat Transf. Part A Appl. 73(2), 75–93 (2018)

    Article  ADS  Google Scholar 

  6. Hirsh, C.: Numerical Computation of Internal and External Flows. Butterworth-Heinemann, Oxford (2007)

    Google Scholar 

  7. Minkowycz, W.J., Sparrow, E.M., Schneider, G.E., Pletcher, R.H.: Handbook of Numerical Heat Transfer. Wiley, Chichester (1988)

    Google Scholar 

  8. Filippini, G., Maliska, C.R., Vaz Jr., M.: A physical perspective of the element-based finite volume method and FEM-Galerkin methods within the framework of the space of finite elements. Int. J. Numer. Methods Eng. 98(1), 24–43 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  9. Pan, D.: A high-order finite volume method for solving one-dimensional convection and diffusion equations. Numer. Heat Transf. Part B Fund. 71(6), 533–548 (2017)

    Article  ADS  Google Scholar 

  10. Demirdžić, I.: On the discretization of the diffusion term in finite-volume continuum Mechanics. Numer. Heat Transf. Part B Fund. 68(1), 1–10 (2015)

    ADS  Google Scholar 

  11. Prestini, D., Filippini, G., Zdanski, P.S.B., Vaz Jr., M.: Fundamental approach to anisotropic heat conduction using the element-based finite volume method. Numer. Heat Transf. Part B Fund. 71(4), 327–345 (2017)

    Article  ADS  Google Scholar 

  12. Tannehill, J.C., Anderson, D.A., Pletcher, R.H.: Computational Fluid Mechanics and Heat Transfer. CRC Press, Boca Raton (1997)

    MATH  Google Scholar 

  13. Patankar, S.V.: Numerical Heat Transfer and Fluid Flow. Hemisphere Publishing Corporation, New York (1980)

    MATH  Google Scholar 

  14. Chorin, A.J.: A numerical method for solving incompressible fluid flow problems. J. Comput. Phys. 135, 118–125 (1997)

    Article  ADS  MATH  Google Scholar 

  15. Salari, M., Rezvani, A., Mohammadtabar, A., Mohammadtabar, M.: Numerical study of entropy generation for natural convection in rectangular cavity with circular corners. Heat Transf. Eng. 36(2), 186–199 (2015)

    Article  ADS  Google Scholar 

  16. Ferziger, J.H., Peric, M.: Computational Methods for Fluid Dynamics, 2nd edn. Springer, Berlin (2002)

    Book  MATH  Google Scholar 

  17. Deng, Q.-H., Tang, G.-F.: Special treatment of pressure correction based on continuity conservation in a pressure-based algorithm. Numer. Heat Transf. Part B Fund. 42(1), 73–92 (2002)

    Article  ADS  Google Scholar 

  18. Shamadhani Begum, A., Nithyadevi, N.: Effect of moving flat plate on hydro-magnetic mixed convection in a porous enclosure with sinusoidal heating side walls and internal heat generation. Comput. Therm. Sci. 9(1), 13–28 (2017)

    Article  Google Scholar 

  19. Asako, Y., Faghri, M.: Modification of SIMPLE algorithm to handle natural convection flows with zero-isothermal compressibility. Int. J. Heat Mass Transf. 122, 290–305 (2018)

    Article  Google Scholar 

  20. Natesan, S., Arumugam, S.K., Murugesan, S., Chamkha, A.J.: Heat transfer enhancement of uniformly/linearly heated side wall in a square enclosure utilizing alumina water nanofluid. Comput. Therm. Sci. 9(3), 227–241 (2017)

    Article  Google Scholar 

  21. Hu, W., Wang, L., Guan, Y., Hu, W.: The effect of shape of winglet vortex generator on the thermal hydrodynamic performance of a circular tube bank fin heat exchanger. Heat Mass Transf. 53(9), 2961–2973 (2017)

    Article  ADS  Google Scholar 

  22. White, F.M.: Fluid Mechanics, 4th edn. McGraw-Hill, New York (1998)

    Google Scholar 

  23. Rhie, C.M., Chow, W.L.: A numerical study of the turbulent flow past an isolated airfoil with trailing edge separation. AIAA J. 21, 1525–1532 (1983)

    Article  ADS  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. M. Martins.

Additional information

Communicated by Andreas Öchsner.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Martins, M.M., Vaz, M. & Zdanski, P.S.B. A note on a derivative scheme for the finite volume method applied to incompressible viscous fluid. Continuum Mech. Thermodyn. 30, 943–952 (2018). https://doi.org/10.1007/s00161-018-0649-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00161-018-0649-3

Keywords

Navigation