Continuum Mechanics and Thermodynamics

, Volume 30, Issue 3, pp 657–666 | Cite as

A numerical approach in describing ionanofluids behavior in laminar and turbulent flow

  • Elena Ionela Chereches
  • K. Viswanatha Sharma
  • Alina Adriana Minea
Original Article


Ionic liquids are a new class of fluids to be considered for heat transfer due to their remarkable thermophysical properties. Experimental researches on ionic liquids have increased over the last few years and, as an extension, a new class of heat transfer fluids, the ionanofluids were considered in some recent experimental studies. Ionanofluids consists in suspending little amounts of high conductive nanoparticles in ionic liquids. In spite of a lot of inconsistent reports—mainly due to the deficient understanding of the involved mechanisms—ionanofluids have been demonstrated as a new favorable heat transfer fluid. The enhanced thermal conductivity of ionanofluids over the basic ionic liquids is considered one of the driving factors for enhancing convection. Nonetheless, the thermal conductivity is the most studied parameter in spite of the important influence of viscosity variation on the convective flow. This numerical study employed Ansys Fluent commercial code and showed that a correct description of thermophysical properties may make ionanofluids a very promising new heat transfer fluid since the preliminary results are encouraging.


Ionic liquids Ionanofluids Alumina nanoparticle Thermal conductivity Nusselt number 

List of symbols


Specific heat (J/kg K)


Hydraulic diameter (m)


Heat transfer coefficient (\(\hbox {W/m}^{2}\) K)


Thermal conductivity (W/m K)


Length (m)


Nusselt number, dimensionless


Dimensionless pressure


Prandtl number, dimensionless


Heat flux (\(\hbox {W/m}^{2}\))


Radius (m)


Ray, \(R = D/2\)


Reynolds number, dimensionless


Temperature (K)


Dimensionless tangential velocity


Velocity components (m/s)

\({u}_{\infty }\)

Average velocity for inlet flow


Axial velocity


Dimensionless radial velocity


Dimensionless axial velocity


Non-dimensional coordinates


Cartesian coordinates (m)

Greek symbols

\(\alpha \)

Thermal diffusivity

\(\delta _{\mathrm{t}}\)

Thermal boundary layer thickness (m)

\(\varphi \)

Fraction of particles

\(\mu \)

Fluid dynamic viscosity

\(\rho \)

Density (kg/m\(^{3}\))

\(\varTheta \)

Dimensionless temperature


\(\infty \)

Refers to inlet flow


Refers to bulk temperature


Refers to base-fluid


Refers to base-fluid—ionic liquid


Refers to ionanofluid property


Refers to a mean value


Refers to a mean value on exit


Refers to nanoparticle


Refers to “ionanofluid/base-fluid” ratio


Constant wall temperature


Value on the wall surface


Based on length x


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Fukushima, T., Aida, T.: Ionic liquids for soft functional materials with carbon nanotubes. Chem. A Eur. J. 13, 5048–5058 (2007)CrossRefGoogle Scholar
  2. 2.
    Wasserscheid, P., Welton, T.: Ionic Liquids in Synthesis. Wiley, Weinheim (2008)Google Scholar
  3. 3.
    Marsh, K.N., Boxall, J.A., Lichtenthaler, R.: Room temperature ionic liquids and their mixtures—a review. Fluid Phase Equilib. 219, 93–98 (2004)CrossRefGoogle Scholar
  4. 4.
    Earle, M.J., Seddon, K.R.: Ionic liquids. Green solvents for the future. Pure Appl. Chem. 72, 1391–1398 (2000)CrossRefGoogle Scholar
  5. 5.
    Ghandi, K.: A review of ionic liquids, their limits and applications. Green Sustain. Chem. 4, 44–53 (2014)CrossRefGoogle Scholar
  6. 6.
    Paul, T.C., Morshed, A.K.M., Fox, E.B., Khan, J.A.: Enhanced thermophysical properties of NEILs as heat transfer fluids for solar thermal applications. Appl. Therm. Eng. 110, 1–9 (2017)CrossRefGoogle Scholar
  7. 7.
    França, J.M.P.: Thermal properties of ionanofluids. M.Sc. thesis, Faculdade de Ciências da Universidade de Lisboa, Portugal (2010)Google Scholar
  8. 8.
    Ribeiro, A.P.C., Vieira, S.I.C., França, J.M.P., Queirós, C.S., Langa, E., Lourenço, M.J.V., Murshed, S.M.S., de Castro, C.A.N.: Thermal properties of ionic liquids and ionanofluids. In: Kokorin, A. (ed.) Ionic Liquids: Theory, Properties, New Approaches. InTech, Rijeka (2011)Google Scholar
  9. 9.
    Murshed, S.M.S., de Castro, C.A.N., Lourenço, M.J.V., Lopes, M.L.M., Santos, F.J.V.: Current research and future applications of nano- and ionano-fluids. J. Phys. Conf. Ser. 395, 012117–012125 (2012)CrossRefGoogle Scholar
  10. 10.
    de Castro, C.A.N., Ribeiro, A.P.C., Vieira, S.I.C., França, J.P.M., Lourenço, M.J.V., Santos, F.V., Murshed, S.M.S., Goodrich, P., Hardacre, C.: Synthesis, properties and physical applications of ionanofluids, chapter 7. In: Kadokawa, J. (ed.) Ionic Liquids—New Aspects for the Future, pp. 165–193. Intech, London (2013)Google Scholar
  11. 11.
    França, J.M.P., Reis, F., Vieira, S.I.C., Lourenço, M.J.V., Santos, F.J.V., de Castro, C.A.N., Pádua, A.H.: Thermophysical properties of ionic liquid dicyanamide (DCA) nanosystems. J. Chem. Thermodyn. 79, 248–257 (2014)CrossRefGoogle Scholar
  12. 12.
    Shevelyova, M.P., Paulechka, Y.U., Kabo, G.J., Blokhin, A.V., Kabo, A.G., Gubarevich, T.M.: Physicochemical properties of imidazolium-based ionic nanofluids: density, heat capacity, and enthalpy of formation. J. Phys. Chem. C 117, 4782–4790 (2013)CrossRefGoogle Scholar
  13. 13.
    He, Z., Alexandridis, P.: Nanoparticles in ionic liquids: interactions and organization. Phys. Chem. Chem. Phys. 17, 18238–18261 (2015)CrossRefGoogle Scholar
  14. 14.
    Wang, B., Wang, X., Lou, W., Hao, J.: Gold-ionic liquid nanofluids with preferably tribological properties and thermal conductivity. Nanoscale Res. Lett. 6, 259 (2011)ADSCrossRefGoogle Scholar
  15. 15.
    Ferreira, A.G.M., Simoes, P.N., Ferreira, A.F., Fonseca, M.A., Oliveira, M.S.A., Trino, A.S.M.: Transport and thermal properties of quaternary phosphonium ionic liquids and ionanofluids. J. Chem. Thermodyn. 64, 80–92 (2013)CrossRefGoogle Scholar
  16. 16.
    Paul, T.C.: Investigation of thermal performance of nanoparticle enhanced ionic liquids (NEILs) for solar collector applications. Doctoral dissertation. (2014). Accessed July 2017
  17. 17.
    Żyła, G., Fal, J., Gizowska, M., Witek, A., Cholewa, M.: Dynamic viscosity of aluminum oxide—ethylene glycol (Al2O3-EG) nanofluids. Acta Phys. Pol. A 128, 240–243 (2015)CrossRefGoogle Scholar
  18. 18.
    Żyła, G., Witek, A., Gizowska, M.: Rheological profile of boron nitride—ethylene glycol nanofluids. J. Appl. Phys. 117, 014302 (2015)ADSCrossRefGoogle Scholar
  19. 19.
    França, J.M.P., Vieira, S.I.C., Lourenço, M.J.V., Murshed, S.M.S., de Castro, C.A.N.: Thermal conductivity of ionanofluids of [C4mim][NTf2] and [C2mim][EtSO4] with carbon nanotubes. Experiment and theory. J. Chem. Eng. Data 58, 467–476 (2013)CrossRefGoogle Scholar
  20. 20.
    Ribeiro, A.P.C., Vieira, S.I.C., Goodrich, P., Hardacre, C., Lourenço, M.J.V., de Castro, C.A.N.: Thermal conductivity of [Cnmim][(CF3SO2)2N] and [C4mim][BF4] IoNanofluids with carbon nanotubes—measurement, theory and structural characterization. J. Nanofluids 2, 55–62 (2013)CrossRefGoogle Scholar
  21. 21.
    Patil, V., Cera-Manjarre, A., Salavera, D., Rode, C., Patil, K., de Castro, C.A.N., Coronas, A.: Ru-imidazolium halide ionanofluids. Synthesis, structural, morphological and thermophysical properties. J. Nanofluids 5, 191–208 (2016)CrossRefGoogle Scholar
  22. 22.
    Minea, A.A., El-Maghlany, W.M.: Natural convection heat transfer utilizing ionic nanofluids with temperature-dependent thermophysical properties. Chem. Eng. Sci. 174, 13–24 (2017)CrossRefGoogle Scholar
  23. 23.
    Paul, T.C., Morshed, A.K.M., Fox, E.B., Khan, J.A.: Experimental investigation of natural convection heat transfer of Al2O3 nanoparticle enhanced ionic liquids (NEILs). Int. J. Heat Mass Transf. 83, 753–761 (2015)CrossRefGoogle Scholar
  24. 24.
    de Castro, C.A.N., Murshed, S.M.S., Lourenço, M.J.V., Santos, F.J.V., Lopes, M.L.M., França, J.M.P.: Enhanced thermal conductivity and heat capacity of carbon nanotubes-ionanofluids. Int. J. Therm. Sci. 62, 34–39 (2012)CrossRefGoogle Scholar
  25. 25.
    Minea, A.A.: Numerical simulation of nanoparticles concentration effect on forced convection in a tube with nanofluids. Heat Transf. Eng. 36, 1144–1153 (2015)ADSCrossRefGoogle Scholar
  26. 26.
    Sundar, L.S., Singh, M.K., Sousa, A.C.M.: Enhanced heat transfer and friction factor of MWCNT-Fe3O4/water hybrid nanofluids. Int. Commun. Heat Mass Transf. 52, 73–83 (2014)CrossRefGoogle Scholar
  27. 27.
    Minea, A.A.: Challenges in hybrid nanofluids behavior in turbulent flow: recent research and numerical comparison. Renew. Sustain. Energy Rev. 71, 426–434 (2017)CrossRefGoogle Scholar
  28. 28.
    Minea, A.A.: A study on Brinkman number variation on water based nanofluid heattransfer in partially heated tubes. Mech. Res. Commun. 73, 7–11 (2016)CrossRefGoogle Scholar
  29. 29.
    Salman, B.H., Mohammed, H.A., Munisamy, K.M., Kherbeet, A.S.: Three-dimensional numerical investigation of nanofluids flow in microtube with different values of heat flux. Heat Transf. Asian Res. 44, 599–619 (2015)CrossRefGoogle Scholar
  30. 30.
    Salman, B.H., Mohammed, H.A., Kherbeet, A.S.: Numerical and experimental investigation of heat transfer enhancement in a microtube using nanofluids. Int. Commun. Heat Mass Transf. 59, 88–100 (2014)CrossRefGoogle Scholar
  31. 31.
    Ansys Fluent version 13.1 user guideGoogle Scholar
  32. 32.
    Paul, T.C., Morshed, M., Khan, J.A.: Numerical investigation of natural convection of nanoparticle enhanced ionic liquids (NEILs) in enclosure heated from below. In: Proceedings of the 11th International Conference on Mechanical Engineering, vol. 1754, pp. 050019 (2016)Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Technical University “Gheorghe Asachi” from IasiIasiRomania
  2. 2.Department of Mechanical Engineering, Center for Energy StudiesJNTUH College of EngineeringKukatpally, HyderabadIndia

Personalised recommendations