Skip to main content
Log in

A numerical approach in describing ionanofluids behavior in laminar and turbulent flow

  • Original Article
  • Published:
Continuum Mechanics and Thermodynamics Aims and scope Submit manuscript

Abstract

Ionic liquids are a new class of fluids to be considered for heat transfer due to their remarkable thermophysical properties. Experimental researches on ionic liquids have increased over the last few years and, as an extension, a new class of heat transfer fluids, the ionanofluids were considered in some recent experimental studies. Ionanofluids consists in suspending little amounts of high conductive nanoparticles in ionic liquids. In spite of a lot of inconsistent reports—mainly due to the deficient understanding of the involved mechanisms—ionanofluids have been demonstrated as a new favorable heat transfer fluid. The enhanced thermal conductivity of ionanofluids over the basic ionic liquids is considered one of the driving factors for enhancing convection. Nonetheless, the thermal conductivity is the most studied parameter in spite of the important influence of viscosity variation on the convective flow. This numerical study employed Ansys Fluent commercial code and showed that a correct description of thermophysical properties may make ionanofluids a very promising new heat transfer fluid since the preliminary results are encouraging.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Abbreviations

\({c}_{\mathrm{p}}\) :

Specific heat (J/kg K)

D :

Hydraulic diameter (m)

h :

Heat transfer coefficient (\(\hbox {W/m}^{2}\) K)

k :

Thermal conductivity (W/m K)

L :

Length (m)

Nu :

Nusselt number, dimensionless

P :

Dimensionless pressure

Pr :

Prandtl number, dimensionless

q :

Heat flux (\(\hbox {W/m}^{2}\))

r :

Radius (m)

R :

Ray, \(R = D/2\)

Re :

Reynolds number, dimensionless

T :

Temperature (K)

U :

Dimensionless tangential velocity

uvw :

Velocity components (m/s)

\({u}_{\infty }\) :

Average velocity for inlet flow

v :

Axial velocity

V :

Dimensionless radial velocity

W :

Dimensionless axial velocity

XYZ :

Non-dimensional coordinates

xyz :

Cartesian coordinates (m)

\(\alpha \) :

Thermal diffusivity

\(\delta _{\mathrm{t}}\) :

Thermal boundary layer thickness (m)

\(\varphi \) :

Fraction of particles

\(\mu \) :

Fluid dynamic viscosity

\(\rho \) :

Density (kg/m\(^{3}\))

\(\varTheta \) :

Dimensionless temperature

\(\infty \) :

Refers to inlet flow

b:

Refers to bulk temperature

bf:

Refers to base-fluid

il:

Refers to base-fluid—ionic liquid

inf:

Refers to ionanofluid property

m:

Refers to a mean value

mexit:

Refers to a mean value on exit

n:

Refers to nanoparticle

r:

Refers to “ionanofluid/base-fluid” ratio

T:

Constant wall temperature

w:

Value on the wall surface

x :

Based on length x

References

  1. Fukushima, T., Aida, T.: Ionic liquids for soft functional materials with carbon nanotubes. Chem. A Eur. J. 13, 5048–5058 (2007)

    Article  Google Scholar 

  2. Wasserscheid, P., Welton, T.: Ionic Liquids in Synthesis. Wiley, Weinheim (2008)

    Google Scholar 

  3. Marsh, K.N., Boxall, J.A., Lichtenthaler, R.: Room temperature ionic liquids and their mixtures—a review. Fluid Phase Equilib. 219, 93–98 (2004)

    Article  Google Scholar 

  4. Earle, M.J., Seddon, K.R.: Ionic liquids. Green solvents for the future. Pure Appl. Chem. 72, 1391–1398 (2000)

    Article  Google Scholar 

  5. Ghandi, K.: A review of ionic liquids, their limits and applications. Green Sustain. Chem. 4, 44–53 (2014)

    Article  Google Scholar 

  6. Paul, T.C., Morshed, A.K.M., Fox, E.B., Khan, J.A.: Enhanced thermophysical properties of NEILs as heat transfer fluids for solar thermal applications. Appl. Therm. Eng. 110, 1–9 (2017)

    Article  Google Scholar 

  7. França, J.M.P.: Thermal properties of ionanofluids. M.Sc. thesis, Faculdade de Ciências da Universidade de Lisboa, Portugal (2010)

  8. Ribeiro, A.P.C., Vieira, S.I.C., França, J.M.P., Queirós, C.S., Langa, E., Lourenço, M.J.V., Murshed, S.M.S., de Castro, C.A.N.: Thermal properties of ionic liquids and ionanofluids. In: Kokorin, A. (ed.) Ionic Liquids: Theory, Properties, New Approaches. InTech, Rijeka (2011)

    Google Scholar 

  9. Murshed, S.M.S., de Castro, C.A.N., Lourenço, M.J.V., Lopes, M.L.M., Santos, F.J.V.: Current research and future applications of nano- and ionano-fluids. J. Phys. Conf. Ser. 395, 012117–012125 (2012)

    Article  Google Scholar 

  10. de Castro, C.A.N., Ribeiro, A.P.C., Vieira, S.I.C., França, J.P.M., Lourenço, M.J.V., Santos, F.V., Murshed, S.M.S., Goodrich, P., Hardacre, C.: Synthesis, properties and physical applications of ionanofluids, chapter 7. In: Kadokawa, J. (ed.) Ionic Liquids—New Aspects for the Future, pp. 165–193. Intech, London (2013)

    Google Scholar 

  11. França, J.M.P., Reis, F., Vieira, S.I.C., Lourenço, M.J.V., Santos, F.J.V., de Castro, C.A.N., Pádua, A.H.: Thermophysical properties of ionic liquid dicyanamide (DCA) nanosystems. J. Chem. Thermodyn. 79, 248–257 (2014)

    Article  Google Scholar 

  12. Shevelyova, M.P., Paulechka, Y.U., Kabo, G.J., Blokhin, A.V., Kabo, A.G., Gubarevich, T.M.: Physicochemical properties of imidazolium-based ionic nanofluids: density, heat capacity, and enthalpy of formation. J. Phys. Chem. C 117, 4782–4790 (2013)

    Article  Google Scholar 

  13. He, Z., Alexandridis, P.: Nanoparticles in ionic liquids: interactions and organization. Phys. Chem. Chem. Phys. 17, 18238–18261 (2015)

    Article  Google Scholar 

  14. Wang, B., Wang, X., Lou, W., Hao, J.: Gold-ionic liquid nanofluids with preferably tribological properties and thermal conductivity. Nanoscale Res. Lett. 6, 259 (2011)

    Article  ADS  Google Scholar 

  15. Ferreira, A.G.M., Simoes, P.N., Ferreira, A.F., Fonseca, M.A., Oliveira, M.S.A., Trino, A.S.M.: Transport and thermal properties of quaternary phosphonium ionic liquids and ionanofluids. J. Chem. Thermodyn. 64, 80–92 (2013)

    Article  Google Scholar 

  16. Paul, T.C.: Investigation of thermal performance of nanoparticle enhanced ionic liquids (NEILs) for solar collector applications. Doctoral dissertation. http://scholarcommons.sc.edu/etd/2873 (2014). Accessed July 2017

  17. Żyła, G., Fal, J., Gizowska, M., Witek, A., Cholewa, M.: Dynamic viscosity of aluminum oxide—ethylene glycol (Al2O3-EG) nanofluids. Acta Phys. Pol. A 128, 240–243 (2015)

    Article  Google Scholar 

  18. Żyła, G., Witek, A., Gizowska, M.: Rheological profile of boron nitride—ethylene glycol nanofluids. J. Appl. Phys. 117, 014302 (2015)

    Article  ADS  Google Scholar 

  19. França, J.M.P., Vieira, S.I.C., Lourenço, M.J.V., Murshed, S.M.S., de Castro, C.A.N.: Thermal conductivity of ionanofluids of [C4mim][NTf2] and [C2mim][EtSO4] with carbon nanotubes. Experiment and theory. J. Chem. Eng. Data 58, 467–476 (2013)

    Article  Google Scholar 

  20. Ribeiro, A.P.C., Vieira, S.I.C., Goodrich, P., Hardacre, C., Lourenço, M.J.V., de Castro, C.A.N.: Thermal conductivity of [Cnmim][(CF3SO2)2N] and [C4mim][BF4] IoNanofluids with carbon nanotubes—measurement, theory and structural characterization. J. Nanofluids 2, 55–62 (2013)

    Article  Google Scholar 

  21. Patil, V., Cera-Manjarre, A., Salavera, D., Rode, C., Patil, K., de Castro, C.A.N., Coronas, A.: Ru-imidazolium halide ionanofluids. Synthesis, structural, morphological and thermophysical properties. J. Nanofluids 5, 191–208 (2016)

    Article  Google Scholar 

  22. Minea, A.A., El-Maghlany, W.M.: Natural convection heat transfer utilizing ionic nanofluids with temperature-dependent thermophysical properties. Chem. Eng. Sci. 174, 13–24 (2017)

    Article  Google Scholar 

  23. Paul, T.C., Morshed, A.K.M., Fox, E.B., Khan, J.A.: Experimental investigation of natural convection heat transfer of Al2O3 nanoparticle enhanced ionic liquids (NEILs). Int. J. Heat Mass Transf. 83, 753–761 (2015)

    Article  Google Scholar 

  24. de Castro, C.A.N., Murshed, S.M.S., Lourenço, M.J.V., Santos, F.J.V., Lopes, M.L.M., França, J.M.P.: Enhanced thermal conductivity and heat capacity of carbon nanotubes-ionanofluids. Int. J. Therm. Sci. 62, 34–39 (2012)

    Article  Google Scholar 

  25. Minea, A.A.: Numerical simulation of nanoparticles concentration effect on forced convection in a tube with nanofluids. Heat Transf. Eng. 36, 1144–1153 (2015)

    Article  ADS  Google Scholar 

  26. Sundar, L.S., Singh, M.K., Sousa, A.C.M.: Enhanced heat transfer and friction factor of MWCNT-Fe3O4/water hybrid nanofluids. Int. Commun. Heat Mass Transf. 52, 73–83 (2014)

    Article  Google Scholar 

  27. Minea, A.A.: Challenges in hybrid nanofluids behavior in turbulent flow: recent research and numerical comparison. Renew. Sustain. Energy Rev. 71, 426–434 (2017)

    Article  Google Scholar 

  28. Minea, A.A.: A study on Brinkman number variation on water based nanofluid heattransfer in partially heated tubes. Mech. Res. Commun. 73, 7–11 (2016)

    Article  Google Scholar 

  29. Salman, B.H., Mohammed, H.A., Munisamy, K.M., Kherbeet, A.S.: Three-dimensional numerical investigation of nanofluids flow in microtube with different values of heat flux. Heat Transf. Asian Res. 44, 599–619 (2015)

    Article  Google Scholar 

  30. Salman, B.H., Mohammed, H.A., Kherbeet, A.S.: Numerical and experimental investigation of heat transfer enhancement in a microtube using nanofluids. Int. Commun. Heat Mass Transf. 59, 88–100 (2014)

    Article  Google Scholar 

  31. Ansys Fluent version 13.1 user guide

  32. Paul, T.C., Morshed, M., Khan, J.A.: Numerical investigation of natural convection of nanoparticle enhanced ionic liquids (NEILs) in enclosure heated from below. In: Proceedings of the 11th International Conference on Mechanical Engineering, vol. 1754, pp. 050019 (2016)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alina Adriana Minea.

Additional information

Communicated by Andreas Öchsner.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chereches, E.I., Sharma, K.V. & Minea, A.A. A numerical approach in describing ionanofluids behavior in laminar and turbulent flow. Continuum Mech. Thermodyn. 30, 657–666 (2018). https://doi.org/10.1007/s00161-018-0634-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00161-018-0634-x

Keywords

Navigation