Advertisement

Continuum Mechanics and Thermodynamics

, Volume 30, Issue 3, pp 667–674 | Cite as

Numerical solutions of differential equations with fractional L-derivative

  • A. K. Lazopoulos
Original Article

Abstract

Fractional differential equations are solved with L-fractional derivatives, using numerical procedures. Two characteristic fractional differential equations are numerically solved. The first equation describes the motion of a thin rigid plate immersed in a Newtonian fluid connected by a massless spring to a fixed point, and the other one the diffusion of gas in a fluid.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Leibnitz, G.W.: Letter to G. A. L’Hospital. Leibnit. Math. Schr. 2, 301–302 (1849)Google Scholar
  2. 2.
    Liouville, J.: Sur le calcul des differentielles a indices quelconques. J. Ecol. Polytech. 13, 71–162 (1832)Google Scholar
  3. 3.
    Riemann, B.: Versuch einer allgemeinen Auffassung der Integration and Differentiation. In: Gesammelte Werke, vol. 62 (1876)Google Scholar
  4. 4.
    Tarasov, V.E.: Fractional vector calculus and fractional Maxwell’s equations. Ann. Phys. 323, 2756–2778 (2008)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Tarasov, V.E.: Fractional Dynamics: Applications of Fractional Calculus to Dynamics of Particles, Fields and Media. Springer, Berlin (2010)CrossRefzbMATHGoogle Scholar
  6. 6.
    Baleanu, D., Golmankhaneh Ali, K., Golmankhaneh Alir, K., Baleanu, M.C.: Fractional electromagnetic equations using fractional forms. Int. J. Theor. Phys. 48(11), 3114–3123 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Golmankhaneh Ali, K., Golmankhaneh Alir, K., Baleanu, D.: About Schrodinger equation on fractals curves imbedding in R\(^3\). Int. J. Theor. Phys. 54(4), 1275–1282 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Marin, M.: On weak solutions of elasticity of dipolar bodies with voids. J. Comput. Appl. Math. 82, 291–297 (1997)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Marin, M.: Harmonic vibrations in thermoelasticity of microstretch materials. J. Vib. Acoust. 132(4), 044501-1–044501-6 (2010)CrossRefGoogle Scholar
  10. 10.
    Sharma, K., Marin, M.: Effect of distinct conductive and thermodynamic temperatures on the reflection of plane waves in micropolar elastic half-space. Univ. Politeh. Buchar. Sci. Bull. Ser. A Appl. Math. Phys. 75(2), 121–132 (2013). (ISSN: 1223-7027)MathSciNetzbMATHGoogle Scholar
  11. 11.
    Kilbas, A.A., Srivastava, H.M., Trujillo, J.J.: Theory and Applications of Fractional Differential Equations. Elsevier, Amsterdam (2006)zbMATHGoogle Scholar
  12. 12.
    Samko, S.G., Kilbas, A.A., Marichev, O.I.: Fractional Integrals and Derivatives: Theory and Applications. Gordon and Breach, Amsterdam (1993)zbMATHGoogle Scholar
  13. 13.
    Podlubny, I.: Fractional Differential Equations (An Introduction to Fractional Derivatives, Fractional Differential Equations, Some Methods of Their Solution and Some of Their Applications. Academic Press, San Diego (1999)zbMATHGoogle Scholar
  14. 14.
    Oldham, K.B., Spanier, J.: The Fractional Calculus. Academic Press, New York (1974)zbMATHGoogle Scholar
  15. 15.
    Bagley, R.L., Torvik, P.J.: A theoretical basis for the application of fractional calculus to viscoelasticity. J. Rheol. 27, 201–10 (1983)ADSCrossRefzbMATHGoogle Scholar
  16. 16.
    Bagley, R.L., Torvik, P.J.: Fractional calculus model of viscoelastic behavior. J. Rheol. 30, 133–155 (1986)ADSCrossRefzbMATHGoogle Scholar
  17. 17.
    Atanackovic, T.M., Konjik, S., Philipovic, S.: Variational problems with fractional derivatives: Euler–Lagrange equations. J. Phys. A Math. Theor. 41, 095201 (2008)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Atanackovic, T.M.: A generalized model for the uniaxial isothermal deformation of a viscoelastic body. Acta Mech. 159, 77–86 (2002a)CrossRefzbMATHGoogle Scholar
  19. 19.
    Atanackovic, T.M., Stankovic, B.: Dynamics of a viscoelastic rod of fractional derivative type. ZAMM 82(6), 377–386 (2002b)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Atanackovic, T.M.: A modified Zener model of a viscoelastic body. Contin. Mech. Thermodyn. 14, 137–148 (2002)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Atanackovic, T.M., Philipovic, S., Zorica, D.: Vibrations of a system: viscoelastic rod of fractional type and a body attached to the rod. Appl. Math. Inform. Mech. 4(2), 27–34 (2012)Google Scholar
  22. 22.
    Mainardi, F.: Fractional Calculus and Waves in Linear Viscoelasticity. Imperial College Press, London (2010)CrossRefzbMATHGoogle Scholar
  23. 23.
    Mainardi, F., Spada, G.: Creep, relaxation and viscosity properties for basic fractional models in rheology. Eur. Phys. J. Spec. Top. 193, 133–160 (2011)CrossRefGoogle Scholar
  24. 24.
    Mainardi, F., Gorenflo, R.: Time-fractional derivatives in relaxation processes: a tutorial survey. Fract. Calc. Appl. Anal. 10(3), 269–308 (2007)MathSciNetzbMATHGoogle Scholar
  25. 25.
    Meral, F.C., Royston, T.J., Magin, R.: Fractional calculus in viscoelasticity: an experimental study. Commun. Nonlinear Sci. Numer. Simul. 15(4), 939–945 (2010)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  26. 26.
    Müller, S., Kästner, M., Brummund, J., Ubricht, V.: A nonlinear fractional viscoelastic material model for polymers. Comput. Mater. Sci. 50(10), 2938–2942 (2011)CrossRefGoogle Scholar
  27. 27.
    Müller, S., Kästner, M., Brummund, J., Ubricht, V.: A material model of nonlinear fractional viscoelasticity. Proc. Appl. Math. Mech. 11, 411–412 (2011)CrossRefGoogle Scholar
  28. 28.
    Sabatier, J., Agrawal, O.P., Machado, J.A.: Advances in Fractional Calculus (Theoretical developments and applications in Physics and Engineering). Springer, Berlin (2007)zbMATHGoogle Scholar
  29. 29.
    Adolfsson, E.: On the fractional order model of viscoelasticity. Mech. Time Depend. Mater. 9(1), 15–34 (2005)ADSCrossRefGoogle Scholar
  30. 30.
    Lazopoulos, K.A.: Fractional vector calculus and fractional continuum mechanics. In: Conference “Mechanics Though Mathematical Modelling”, celebrating the 70th birthday of Prof. T. Atanackovic, Novi Sad, Serbia, 6–11 Sept., Abstract p. 40 (2015)Google Scholar
  31. 31.
    Lazopoulos, K.A., Lazopoulos, A.K.: Vector calculus and fractional continuum mechanics. Prog. Fract. Differ. Appl. 2(2), 85–104 (2015)CrossRefzbMATHGoogle Scholar
  32. 32.
    Lazopoulos, A.K., Karaoulanis, D.: On L-fractional derivatives and L-fractional homogeneous equations. Int. J. Pure Appl. Math. 21(2), 249–268 (2016)Google Scholar
  33. 33.
    Lazopoulos, K.A., Karaoulanis, D., Lazopoulos, A.K.: On fractional modelling of viscoelastic mechanical systems. Mech. Res. Commun. 78(A), 1–5 (2016)CrossRefzbMATHGoogle Scholar
  34. 34.
    Mouzakis E.D., Lazopoulos A.K.: Experimental verification of fractional modelling of viscoelastic mechanical systems (2017, submitted)Google Scholar
  35. 35.
    Babenko, Y.I.: Heat and Mass Transfer. Khimiya, Leningrad (1986). (in Russian)Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Applied Mechanics Laboratory, Sector of Mathematics and Engineering Applications, Department of Military SciencesEvelpidon Hellenic Army AcademyVariGreece

Personalised recommendations