Advertisement

Continuum Mechanics and Thermodynamics

, Volume 30, Issue 3, pp 459–483 | Cite as

Helmholtz and Gibbs ensembles, thermodynamic limit and bistability in polymer lattice models

  • Stefano Giordano
Original Article

Abstract

Representing polymers by random walks on a lattice is a fruitful approach largely exploited to study configurational statistics of polymer chains and to develop efficient Monte Carlo algorithms. Nevertheless, the stretching and the folding/unfolding of polymer chains within the Gibbs (isotensional) and the Helmholtz (isometric) ensembles of the statistical mechanics have not been yet thoroughly analysed by means of the lattice methodology. This topic, motivated by the recent introduction of several single-molecule force spectroscopy techniques, is investigated in the present paper. In particular, we analyse the force–extension curves under the Gibbs and Helmholtz conditions and we give a proof of the ensembles equivalence in the thermodynamic limit for polymers represented by a standard random walk on a lattice. Then, we generalize these concepts for lattice polymers that can undergo conformational transitions or, equivalently, for chains composed of bistable or two-state elements (that can be either folded or unfolded). In this case, the isotensional condition leads to a plateau-like force–extension response, whereas the isometric condition causes a sawtooth-like force–extension curve, as predicted by numerous experiments. The equivalence of the ensembles is finally proved also for lattice polymer systems exhibiting conformational transitions.

Keywords

Polymer lattice models Polymer stretching Isotensional and isometric ensembles Ensemble equivalence Lattice Green functions 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Weiner, J.H.: Statistical Mechanics of Elasticity. Dover Publication Inc., New York (2002)zbMATHGoogle Scholar
  2. 2.
    Doi, M.: Introduction to Polymer Physics. Clarendon, Oxford (1996)Google Scholar
  3. 3.
    Vanderzande, C.: Lattice Models of Polymers. Cambridge University Press, Cambridge (1998)CrossRefzbMATHGoogle Scholar
  4. 4.
    Janse van Rensburg, E.J.: Statistical Mechanics of Interacting Walks, Polygons, Animals and Vesicles. Oxford University Press Inc., New York (2000)zbMATHGoogle Scholar
  5. 5.
    Flory, P.J.: Statistical Mechanics of Polymer Chains. Wiley, New York (1989)Google Scholar
  6. 6.
    Rubinstein, M., Colby, R.H.: Polymer Physics. Oxford University Press, New York (2003)Google Scholar
  7. 7.
    Binder, K. (ed.): The Monte Carlo Method in Condensed Matter Physics, Topics in Applied Physics, vol. 71. Springer, Berlin (1992)Google Scholar
  8. 8.
    Binder, K., Heermann, D.: Monte Carlo Simulation in Statistical Physics: An Introduction. Springer, Berlin (2010)CrossRefzbMATHGoogle Scholar
  9. 9.
    Halpin-Healy, T., Zhang, Y.C.: Kinetic roughening phenomena, stochastic growth, directed polymers and all that. Aspects of multidisciplinary statistical mechanics. Phys. Rep. 254, 215 (1995)ADSCrossRefGoogle Scholar
  10. 10.
    de Gennes, P.G.: Scaling Concepts in Polymer Physics. Cornell University Press, Ithaca (1979)Google Scholar
  11. 11.
    de Gennes, P.G.: Exponents for the excluded volume problem as derived by the Wilson method. Phys. Lett. A 38, 339 (1972)ADSCrossRefGoogle Scholar
  12. 12.
    Strick, T.R., Dessinges, M.-N., Charvin, G., Dekker, N.H., Allemand, J.-F., Bensimon, D., Croquette, V.: Stretching of macromolecules and proteins. Rep. Progr. Phys. 66, 1 (2002)ADSCrossRefGoogle Scholar
  13. 13.
    Neuman, K.C., Nagy, A.: Single-molecule force spectroscopy: optical tweezers, magnetic tweezers and atomic force microscopy. Nature Methods 5, 491 (2008)CrossRefGoogle Scholar
  14. 14.
    Kumar, S., Li, M.S.: Biomolecules under mechanical force. Phys. Rep. 486, 1 (2010)ADSCrossRefGoogle Scholar
  15. 15.
    Bustamante, C., Liphardt, J., Ritort, F.: The nonequilibrium thermodynamics of small systems. Phys. Today 58, 43 (2005)CrossRefGoogle Scholar
  16. 16.
    Dieterich, E., Camunas-Soler, J., Ribezzi-Crivellari, M., Seifert, U., Ritort, F.: Control of force through feedback in small driven systems. Phys. Rev. E 94, 012107 (2016)ADSCrossRefGoogle Scholar
  17. 17.
    Winkler, R.G.: Deformation of semiflexible chains. J. Chem. Phys. 118, 2919 (2003)ADSCrossRefGoogle Scholar
  18. 18.
    Marko, J.F., Siggia, E.D.: Stretching DNA. Macromolecules 28, 8759 (1995)ADSCrossRefGoogle Scholar
  19. 19.
    Glatting, G., Winkler, R.G., Reineker, P.: Partition function and force extension relation for a generalized freely jointed chain. Macromolecules 26, 6085 (1993)ADSCrossRefGoogle Scholar
  20. 20.
    Manca, F., Giordano, S., Palla, P.L., Zucca, R., Cleri, F., Colombo, L.: Elasticity of flexible and semiflexible polymers with extensible bonds in the Gibbs and Helmholtz ensembles. J. Chem. Phys. 136, 154906 (2012)ADSCrossRefGoogle Scholar
  21. 21.
    Manca, F., Giordano, S., Palla, P.L., Cleri, F., Colombo, L.: Response to comment on elasticity of flexible and semiflexible polymers with extensible bonds in the Gibbs and Helmholtz ensembles. J. Chem. Phys. 138, 157102 (2013)ADSCrossRefGoogle Scholar
  22. 22.
    Manca, F., Giordano, S., Palla, P.L., Cleri, F., Colombo, L.: Theory and Monte Carlo simulations for the stretching of flexible and semiflexible single polymer chains under external fields. J. Chem. Phys. 137, 244907 (2012)ADSCrossRefGoogle Scholar
  23. 23.
    Rosa, A., Hoang, T.X., Marenduzzo, D., Maritan, A.: A new interpolation formula for semiflexible polymers. Biophys. Chem. 115, 251 (2005)CrossRefGoogle Scholar
  24. 24.
    Su, T., Purohit, P.K.: Thermomechanics of a heterogeneous fluctuating chain. J. Mech. Phys. Solids 58, 164 (2010)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    Kierfeld, J., Niamploy, O., Sa-Yakanit, V., Lipowsky, R.: Stretching of semiflexible polymers with elastic bonds. Eur. Phys. J. E 14, 17 (2004)CrossRefGoogle Scholar
  26. 26.
    Winkler, R.G.: Equivalence of statistical ensembles in stretching single flexible polymers. Soft Matter 6, 6183 (2010)ADSCrossRefGoogle Scholar
  27. 27.
    Manca, F., Giordano, S., Palla, P.L., Cleri, F.: On the equivalence of thermodynamics ensembles for flexible polymer chains. Phys. A Stat. Mech. Appl. 395, 154 (2014)MathSciNetCrossRefGoogle Scholar
  28. 28.
    Rief, M., Fernandez, J.M., Gaub, H.E.: Elastically coupled two-level systems as a model for biopolymer extensibility. Phys. Rev. Lett. 81, 4764 (1998)ADSCrossRefGoogle Scholar
  29. 29.
    Manca, F., Giordano, S., Palla, P.L., Cleri, F., Colombo, L.: Two-state theory of single-molecule stretching experiments. Phys. Rev. E 87, 032705 (2013)ADSCrossRefGoogle Scholar
  30. 30.
    Kellermayer, M.S., Smith, S.B., Granzier, H.L., Bustamante, C.: Folding-unfolding transitions in single titin molecules characterized with laser tweezers. Science 276, 1112 (1997)CrossRefGoogle Scholar
  31. 31.
    Rief, M., Pascual, J., Saraste, M., Gaub, H.E.: Single molecule force spectroscopy of spectrin repeats: low unfolding forces in helix bundles. J. Mol. Biol. 286, 553 (1999)CrossRefGoogle Scholar
  32. 32.
    Prados, A., Carpio, A., Bonilla, L.L.: Sawtooth patterns in force-extension curves of biomolecules: an equilibrium-statistical-mechanics theory. Phys. Rev. E 88, 012704 (2013)ADSCrossRefGoogle Scholar
  33. 33.
    Bonilla, L.L., Carpio, A., Prados, A.: Theory of force-extension curves for modular proteins and DNA hairpins. Phys. Rev. E 91, 052712 (2015)ADSCrossRefGoogle Scholar
  34. 34.
    Giordano, S.: Spin variable approach for the statistical mechanics of folding and unfolding chains. Soft Matter 13, 6877 (2017)ADSCrossRefGoogle Scholar
  35. 35.
    Caruel, M., Allain, J.-M., Truskinovsky, L.: Mechanics of collective unfolding. J. Mech. Phys. Sol. 76, 237 (2015)ADSCrossRefGoogle Scholar
  36. 36.
    Benichou, I., Zhang, Y., Dudko, O.K., Givli, S.: The rate dependent response of a bistable chain at finite temperature. J. Mech. Phys. Sol. 95, 44 (2016)ADSCrossRefGoogle Scholar
  37. 37.
    Parzen, E.: Modern Probability Theory and Its Applications. Wiley-Interscience, New York (1992)zbMATHGoogle Scholar
  38. 38.
    Oppenheim, A.V., Schafer, R.W.: Discrete-Time Signal Processing. Prentice Hall, Upper Saddle River (1999)zbMATHGoogle Scholar
  39. 39.
    Berlin, T.H., Kac, M.: The spherical model of a ferromagnet. Phys. Rev. 86, 821 (1952)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  40. 40.
    Morita, T., Horiguchi, T.: Calculation of the lattice Green’s function for the bcc, fcc, and rectangular lattices. J. Math. Phys. 12, 986 (1971)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  41. 41.
    Delves, R.T., Joyce, G.S.: On the Green function for the anisotropic simple cubic lattice. Ann. Phys. 291, 71 (2001)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  42. 42.
    Bernasconi, J.: Conduction in anisotropic disordered systems: effective-medium theory. Phys. Rev. B 9, 4575 (1974)ADSCrossRefGoogle Scholar
  43. 43.
    Cserti, J.: Application of the lattice Greens function for calculating the resistance of an infinite network of resistors. Am. J. Phys. 68, 896 (2000)ADSCrossRefGoogle Scholar
  44. 44.
    Giordano, S.: Disordered lattice networks: general theory and simulations. Int. J. Circuit Theor. Appl. 33, 519 (2005)CrossRefzbMATHGoogle Scholar
  45. 45.
    Giordano, S.: Two-dimensional disordered lattice networks with substrate. Physica A 375, 726 (2007)ADSCrossRefGoogle Scholar
  46. 46.
    Wang, Q.: On the anisotropy of lattice polymers. J. Chem. Phys. 131, 234903 (2009)ADSCrossRefGoogle Scholar
  47. 47.
    Glatting, G., Winkler, R.G., Reineker, P.: Are the continuum and the lattice representation of freely jointed chains equivalent? Macromol. Theory Simul. 3, 575 (1994)CrossRefGoogle Scholar
  48. 48.
    Taylor, M.P., Lipson, J.E.G.: Lattice versus continuum models of a polymer chain. J. Chem. Phys. 111, 8701 (1999)ADSCrossRefGoogle Scholar
  49. 49.
    Fedoryuk, M.V.: Asymptotic: Integrals and Series. Nauka, Moscow (1987)zbMATHGoogle Scholar
  50. 50.
    Wong, R.: Asymptotic Approximations of Integrals. Academic Press, New York (1989)zbMATHGoogle Scholar
  51. 51.
    Pemantle, R., Wilson, M.C.: Asymptotic expansions of oscillatory integrals with complex phase. Contemp. Math. 520, 221 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  52. 52.
    Neuschel, T.: Apéry polynomials and the multivariate Saddle point method. Constr. Approx. 40, 487 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  53. 53.
    Smith, S.M., Cui, Y., Bustamante, C.: Overstretching B-DNA: the elastic response of individual double-stranded and single-stranded DNA molecules. Science 271, 795 (1996)ADSCrossRefGoogle Scholar
  54. 54.
    Bustamante, C., Bryant, Z., Smith, S.B.: Ten years of tension: single-molecule DNA mechanics. Nature 421, 423 (2003)ADSCrossRefGoogle Scholar
  55. 55.
    Rouzina, I., Bloomfield, V.A.: Force-induced melting of the DNA double helix 1. Thermodynamic analysis. Biophys. J. 80, 882 (2001)CrossRefGoogle Scholar
  56. 56.
    Rouzina, I., Bloomfield, V.A.: Force-induced melting of the DNA double helix 2. Effect of solution conditions. Biophys. J. 80, 894 (2001)CrossRefGoogle Scholar
  57. 57.
    Pupo, A.E.B., Falo, F., Fiasconaro, A.: DNA overstretching transition induced by melting in a dynamical mesoscopic model. J. Chem. Phys. 139, 095101 (2013)ADSCrossRefGoogle Scholar
  58. 58.
    Cocco, S., Yan, J., Léger, J.-F., Chatenay, D., Marko, J.F.: Overstretching and force-driven strand separation of double-helix DNA. Phys. Rev. E 70, 011910 (2004)ADSCrossRefGoogle Scholar
  59. 59.
    Rief, M., Oesterhelt, F., Heymann, B., Gaub, H.E.: Single molecule force spectroscopy on polysaccharides by atomic force microscopy. Science 275, 28 (1997)CrossRefGoogle Scholar
  60. 60.
    Hanke, F., Kreuzer, H.J.: Conformational transitions in single polymer molecules modeled with a complete energy landscape: continuous two-state model. Eur. Phys. J. E 22, 163 (2007)CrossRefGoogle Scholar
  61. 61.
    Bell, G.I.: Models for the specific adhesion of cells to cells. Science 200, 618 (1978)ADSCrossRefGoogle Scholar
  62. 62.
    Fisher, T.E., Oberhauser, A.F., Carrion-Vazquez, M., Marszalek, P.E., Fernandez, J.M.: The study of protein mechanics with the atomic force microscope. Trends Biochem. Sci. 24, 379 (1999)CrossRefGoogle Scholar
  63. 63.
    Imparato, A., Sbrana, F., Vassalli, M.: Reconstructing the free-energy landscape of a polyprotein by single-molecule experiments. Europhys. Lett. 82, 58006 (2008)ADSCrossRefGoogle Scholar
  64. 64.
    De Tommasi, D., Millardi, N., Puglisi, G., Saccoamandi, G.: An energetic model for macromolecules unfolding in stretching experiments. J. R. Soc. Interface 10, 20130651 (2013)CrossRefGoogle Scholar
  65. 65.
    Makarov, D.E.: A theoretical model for the mechanical unfolding of repeat proteins. Biophys. J. 96, 2160 (2009)ADSCrossRefGoogle Scholar
  66. 66.
    Puglisi, G., Truskinovsky, L.: Mechanics of a discrete chain with bi-stable elements. J. Mech. Phys. Sol. 48, 1 (2000)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  67. 67.
    Caruel, M., Allain, J.-M., Truskinovsky, L.: Muscle as a metamaterial operating near a critical point. Phys. Rev. Lett. 110, 248103 (2013)ADSCrossRefGoogle Scholar
  68. 68.
    Caruel, M., Truskinovsky, L.: Statistical mechanics of the Huxley–Simmons model. Phys. Rev. E 93, 062407 (2016)ADSMathSciNetCrossRefGoogle Scholar
  69. 69.
    Efendiev, Y.R., Truskinovsky, L.: Thermalization of a driven bi-stable FPU chain. Contin. Mech. Thermodyn. 22, 679 (2010)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  70. 70.
    Benichou, I., Givli, S.: Structures undergoing discrete phase transformation. J. Mech. Phys. Sol. 61, 94 (2013)ADSMathSciNetCrossRefGoogle Scholar
  71. 71.
    Benichou, I., Givli, S.: Rate dependent response of nanoscale structures having a multiwell energy landscape. Phys. Rev. Lett. 114, 095504 (2015)ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2017

Authors and Affiliations

  1. 1.Institute of Electronics, Microelectronics and Nanotechnology - UMR 8520, LIA LICS, University of Lille, CNRS, Centrale Lille, ISENUniversity of ValenciennesLilleFrance

Personalised recommendations