Advertisement

Continuum Mechanics and Thermodynamics

, Volume 30, Issue 2, pp 381–395 | Cite as

Modeling the rubbing contact in honeycomb seals

  • Tim Fischer
  • Sarah Welzenbach
  • Felix Meier
  • Ewald Werner
  • Sonun Ulan kyzy
  • Oliver Munz
Original Article
  • 87 Downloads

Abstract

Metallic honeycomb labyrinth seals are commonly used as sealing systems in gas turbine engines. Because of their capability to withstand high thermo-mechanical loads and oxidation, polycrystalline nickel-based superalloys, such as Hastelloy X and Haynes 214, are used as sealing material. In addition, these materials must exhibit a tolerance against rubbing between the rotating part and the stationary seal component. The tolerance of the sealing material against rubbing preserves the integrity of the rotating part. In this article, the rubbing behavior at the rotor–stator interface is considered numerically. A simulation model is incorporated into the commercial finite element code ABAQUS/explicit and is utilized to simulate a simplified rubbing process. A user-defined interaction routine between the contact surfaces accounts for the thermal and mechanical interfacial behavior. Furthermore, an elasto-plastic constitutive material law captures the extreme temperature conditions and the damage behavior of the alloys. To validate the model, representative quantities of the rubbing process are determined and compared with experimental data from the literature. The simulation results correctly reproduce the observations made on a test rig with a reference stainless steel material (AISI 304). A parametric study using the nickel-based superalloys reveals a clear dependency of the rubbing behavior on the sliding and incursion velocity. Compared to each other, the two superalloys studied exhibit a different rubbing behavior.

Keywords

Honeycomb seals Thermo-mechanical analysis Friction Damage 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

This work is part of the research project WE 2351/14–1, funded by the DFG (Deutsche Forschungsgemeinschaft). We would like to thank MTU Aero Engines for their technical input and the constructive cooperation, given by Dr. Beate Schleif.

References

  1. 1.
    Abaqus Manuals. Dassault Systèmes Simulia Corporation, Version 6.13 (2013)Google Scholar
  2. 2.
    Archard, J.F.: Contact and rubbing of flat surfaces. J. Appl. Phys. 24, 981–988 (1953)ADSCrossRefGoogle Scholar
  3. 3.
    Bill, R.: Wear of seal material used in aircraft propulsion systems. Wear 59, 165–189 (1980)CrossRefGoogle Scholar
  4. 4.
    Caruso, S., Imbrogno, S., Rotella, G., Ciaran, M.I., Arrazola, P.J., Filice, L., Umbrello, D.: Numerical simulation of surface modification during machining of nickelbased superalloy. Proc. CIRP 31, 130–135 (2015)CrossRefGoogle Scholar
  5. 5.
    Deevi, S.C., Sikka, V.K.: Nickel and iron aluminides: an overview on properties, processing, and applications. Intermetallics 4(5), 357–375 (1996)CrossRefGoogle Scholar
  6. 6.
    Emery, A., Wolak, J., Etemad, S., Choi, S.: An experimental investigation to rubbing at the blade–seal aircraft compressor. Wear 91, 117–130 (1983)CrossRefGoogle Scholar
  7. 7.
    Frontán, J., Zhang, Y., Dao, M., Lu, J., Gálvez, F., Jérusalem, A.: Ballistic performance of nanocrystalline and nanotwinned ultrafine crystal steel. Acta Mater. 60, 1353–1367 (2012)CrossRefGoogle Scholar
  8. 8.
    Gardner, L., Insausti, A., Ng, K.T., Ashraf, M.: Elevated temperature material properties of stainless steel alloys. J. Constr. Steel Res. 66(5), 634–647 (2010)CrossRefGoogle Scholar
  9. 9.
    Ghasripoor, F., Turnquist, N.A., Kowalczyk, M., Couture, B.: Wear prediction of strip seals through conductance. ASME. Turbo Expo 2004: Power for Land, Sea, and Air 4, 331–337 (2004)Google Scholar
  10. 10.
    Grant, B., Preuss, M., Withers, P.J., Baxter, G., Rowlson, M.: Finite element process modelling of inertia friction welding advanced nickel-based superalloy. Mater. Sci. Eng. A 513–514, 366–375 (2009)CrossRefGoogle Scholar
  11. 11.
    Hancock, J., Mackenzie, A.: On the mechanisms of ductile failure in high-strength steels subjected to multi-axial stress-states. J. Mech. Phys. Solids 24(2–3), 147–160 (1976)ADSCrossRefGoogle Scholar
  12. 12.
    Haynes International, I.: Hastelloy X alloy (uns n06002). High-temperature alloys. http://www.haynesintl.com/alloys/alloy-portfolio_/High-temperature-Alloys/HASTELLOY-X-alloy (1997). Accessed 1 June 2017
  13. 13.
    Haynes International, I.: Haynes 214 alloy (uns n07214). High-temperature alloys. http://www.haynesintl.com/alloys/alloy-portfolio_/High-temperature-Alloys/haynes-214-alloy (2008). Accessed 1 June 2017
  14. 14.
    Hegadekatte, V., Kurzenhäuser, S., Huber, N., Kraft, O.: A predictive modeling scheme for wear in tribometers. Tribol. Int. 41(11), 1020–1031 (2008)CrossRefGoogle Scholar
  15. 15.
    Jafarian, F., Ciaran, M.I., Umbrello, D., Arrazola, P.J., Filice, L., Amirabadi, H.: Finite element simulation of machining inconel 718 alloy including microstructure changes. Int. J. Mech. Sci. 88, 110–121 (2014)CrossRefGoogle Scholar
  16. 16.
    Johnson, G.R., Cook, W.H.: Fracture characteristics of three metals subjected to various strains, strain rates, temperatures and pressures. Eng. Fract. Mech. 21(1), 31–48 (1985)CrossRefGoogle Scholar
  17. 17.
    Kalpakjian, S., Schmid, S.R., Werner, E.: Werkstofftechnik, 5th edn. Pearson Studium, München (2011)Google Scholar
  18. 18.
    Kennedy, F.E.: Thermomechanical phenomena in high speed rubbing. Wear 59(1), 149–163 (1980)CrossRefGoogle Scholar
  19. 19.
    Marscher, W.D.: A phenomenological model of abradable wear in high performance turbomachinery. Wear 59(1), 191–211 (1980)CrossRefGoogle Scholar
  20. 20.
    Mohr, D., Doyoyo, M.: Deformation-induced folding systems in thin-walled monolithic hexagonal metallic honeycomb. Int. J. Solids Struct. 41, 3353–3377 (2004)CrossRefMATHGoogle Scholar
  21. 21.
    Mohr, D., Doyoyo, M.: Large plastic deformation of metallic honeycomb: orthotropic rate-independent constitutive model. Int. J. Solids Struct. 41, 4435–4456 (2004)CrossRefMATHGoogle Scholar
  22. 22.
    Mulvihill, D.M., Kartal, M.E., Nowell, D., Hills, D.A.: An elastic-plastic asperity interaction model for sliding friction. Tribol. Int. 44, 1679–1694 (2011)CrossRefGoogle Scholar
  23. 23.
    Orowan, E.: The calculation of roll pressure in hot and cold flat rolling. Proc. Inst. Mech. Eng. 150, 140–167 (1943)CrossRefGoogle Scholar
  24. 24.
    Pataky, G.J., Sehitoglu, H., Maier, H.J.: High temperature fatigue crack growth of haynes 230. Mater. Charact. 75, 69–78 (2013)CrossRefGoogle Scholar
  25. 25.
    Pychynski, T., Höfler, C., Bauer, H.J.: Experimental study on the friction contact between a labyrinth seal fin and a honeycomb stator. J. Eng. Gas Turbines Power 138(6), 062501/1-9 (2016)Google Scholar
  26. 26.
    Rabinowicz, E.: Friction and Wear of Materials, 2nd edn. Wiley, New York (1995)Google Scholar
  27. 27.
    Rathmann, U., Olmes, S., Simeon, A.: Sealing technology: rub test rig for abrasive/abradable systems. ASME Turbo Expo 5, 223–228 (2007)Google Scholar
  28. 28.
    Reichert, S., Lorentz, B., Heldmaier, S., Albers, A.: Wear simulation in non-lubricated and mixed lubricated contacts taking into account the microscale roughness. Tribol. Int. 100, 272–279 (2016)CrossRefGoogle Scholar
  29. 29.
    Sakthivel, T., Laha, K., Nandagopal, M., Chandravathi, K.S., Parameswaran, P., Selvi, S.P., Mathew, M., Mannan, S.K.: Effect of temperature and strain rate on serrated flow behaviour of hastelloy x. Mater. Sci. Eng. A 534, 580–587 (2012)CrossRefGoogle Scholar
  30. 30.
    Shaw, M.C.: The role of friction in deformation processing. Wear 6, 140–458 (1963)CrossRefGoogle Scholar
  31. 31.
    Shaw, M.C., Ber, A., Mamin, P.A.: Friction characteristics of sliding surfaces undergoing subsurface plastic flow. J. Basic Eng. 82, 342–346 (1960)CrossRefGoogle Scholar
  32. 32.
    Smarsly, W., Zheng, N., Buchheim, C., Nindel, C., Silvestro, C., Sporer, D., Tuffs, M., Schreiber, K., Bomba, C.L., Anderson, O., Goehler, H., Simms, N., McColvin, G.: Advanced high temperature turbine seals materials and designs. Mater. Sci. Forum 492–493, 21–26 (2005)CrossRefGoogle Scholar
  33. 33.
    Sporer, D.R., Shiembob, L.T. (eds.): Alloy selection for honeycomb gas path seal systems, GT2004-53115 (2004)Google Scholar
  34. 34.
    Wriggers, P.: Comput. Contact Mech., 2nd edn. Springer, Berlin (2006)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2017

Authors and Affiliations

  1. 1.Institute of Materials Science and Mechanics of MaterialsTechnical University of MunichGarchingGermany
  2. 2.Metals and AlloysUniversity of BayreuthBayreuthGermany
  3. 3.Institute of Thermal TurbomachineryKarlsruhe Institute of TechnologyKarlsruheGermany

Personalised recommendations