Skip to main content
Log in

Continuum modeling of twinning, amorphization, and fracture: theory and numerical simulations

  • Original Article
  • Published:
Continuum Mechanics and Thermodynamics Aims and scope Submit manuscript

Abstract

A continuum mechanical theory is used to model physical mechanisms of twinning, solid-solid phase transformations, and failure by cavitation and shear fracture. Such a sequence of mechanisms has been observed in atomic simulations and/or experiments on the ceramic boron carbide. In the present modeling approach, geometric quantities such as the metric tensor and connection coefficients can depend on one or more director vectors, also called internal state vectors. After development of the general nonlinear theory, a first problem class considers simple shear deformation of a single crystal of this material. For homogeneous fields or stress-free states, algebraic systems or ordinary differential equations are obtained that can be solved by numerical iteration. Results are in general agreement with atomic simulation, without introduction of fitted parameters. The second class of problems addresses the more complex mechanics of heterogeneous deformation and stress states involved in deformation and failure of polycrystals. Finite element calculations, in which individual grains in a three-dimensional polycrystal are fully resolved, invoke a partially linearized version of the theory. Results provide new insight into effects of crystal morphology, activity or inactivity of different inelasticity mechanisms, and imposed deformation histories on strength and failure of the aggregate under compression and shear. The importance of incorporation of inelastic shear deformation in realistic models of amorphization of boron carbide is noted, as is a greater reduction in overall strength of polycrystals containing one or a few dominant flaws rather than many diffusely distributed microcracks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Chen, M., McCauley, J.W., Hemker, K.J.: Shock-induced localized amorphization in boron carbide. Science 299, 1563–1566 (2003)

    Article  ADS  Google Scholar 

  2. Yan, X.Q., Tang, Z., Zhang, L., Guo, J.J., Jin, C.Q., Zhang, Y., Goto, T., McCauley, J.W., Chen, M.W.: Depressurization amorphization of single-crystal boron carbide. Phys. Rev. Lett. 102, 075505 (2009)

    Article  ADS  Google Scholar 

  3. Fanchini, G., McCauley, J.W., Chhowalla, M.: Behavior of disordered boron carbide under stress. Phys. Rev. Lett. 97, 035502 (2006)

    Article  ADS  Google Scholar 

  4. Taylor, D.E., McCauley, J.W., Wright, T.W.: The effects of stoichiometry on the mechanical properties of icosahedral boron carbide under loading. J. Phys. Condens. Matter. 24, 505402 (2012)

    Article  Google Scholar 

  5. Taylor, D.E.: Shock compression of boron carbide: a quantum mechanical analysis. J. Am. Ceram. Soc. 98, 3308–3318 (2015)

    Article  Google Scholar 

  6. An, Q., Goddard, W.A., Cheng, T.: Atomistic explanation of shear-induced amorphous band formation in boron carbide. Phys. Rev. Lett. 113(9), 095501 (2014)

    Article  ADS  Google Scholar 

  7. An, Q., Goddard, W.A.: Atomistic origin of brittle failure of boron carbide from large-scale reactive dynamics simulations: suggestions toward improved ductility. Phys. Rev. Lett. 115, 105051 (2015a)

    Google Scholar 

  8. Grady, D.E.: Adiabatic shear failure in brittle solids. Int. J. Impact Eng. 38, 661–667 (2011)

    Article  Google Scholar 

  9. Clayton, J.D.: Towards a nonlinear elastic representation of finite compression and instability of boron carbide ceramic. Philos. Mag. 92, 2860–2893 (2012a)

    Article  ADS  Google Scholar 

  10. Clayton, J.D.: Mesoscale modeling of dynamic compression of boron carbide polycrystals. Mech. Res. Commun. 49, 57–64 (2013)

    Article  Google Scholar 

  11. Clayton, J.D., Tonge, A.: A nonlinear anisotropic elastic-inelastic constitutive model for polycrystalline ceramics and minerals with application to boron carbide. Int. J. Solids Struct. 64–65, 191–207 (2015)

    Article  Google Scholar 

  12. Li, Y., Zhao, Y.H., Liu, W., Zhang, Z.H., Vogt, R.G., Lavernia, E.J., Schoenung, J.M.: Deformation twinning in boron carbide particles within nanostructured Al 5083/B\(_4\)C metal matrix composites. Philos. Mag. 90, 783–792 (2010)

    Article  ADS  Google Scholar 

  13. Sano, T., Randow, C.L.: The effect of twins on the mechanical behavior of boron carbide. Metall. Mater. Trans. A 42, 570–574 (2011)

    Article  Google Scholar 

  14. Clayton, J.D.: Nonlinear Mechanics of Crystals. Springer, Dordrecht (2011)

    Book  MATH  Google Scholar 

  15. Clayton, J.D., McDowell, D.L.: A multiscale multiplicative decomposition for elastoplasticity of polycrystals. Int. J. Plast. 19, 1401–1444 (2003)

    Article  MATH  Google Scholar 

  16. Kalidindi, S.R.: Incorporation of deformation twinning in crystal plasticity models. J. Mech. Phys. Solids 46, 267–290 (1998)

    Article  ADS  MATH  Google Scholar 

  17. Barton, N.R., Winter, N.W., Reaugh, J.E.: Defect evolution and pore collapse in crystalline energetic materials. Model. Simul. Mater. Sci. Eng. 17, 035003 (2009)

    Article  ADS  Google Scholar 

  18. Clayton, J.D.: A continuum description of nonlinear elasticity, slip and twinning, with application to sapphire. Proc. R. Soc. Lond. A 465, 307–334 (2009)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  19. Clayton, J.D.: Deformation, fracture, and fragmentation in brittle geologic solids. Int. J. Fract. 163, 151–172 (2010a)

    Article  MATH  Google Scholar 

  20. Clayton, J.D.: Modeling nonlinear electromechanical behavior of shocked silicon carbide. J. Appl. Phys. 107, 013520 (2010b)

    Article  ADS  Google Scholar 

  21. Aslan, O., Cordero, N.M., Gaubert, A., Forest, S.: Micromorphic approach to single crystal plasticity and damage. Int. J. Eng. Sci. 49, 1311–1325 (2011)

    Article  MathSciNet  Google Scholar 

  22. Voyiadjis, G.Z., Kattan, P.I.: Damage Mechanics. CRC Press, Boca Raton (2005)

    Book  MATH  Google Scholar 

  23. Bammann, D.J., Solanki, K.N.: On kinematic, thermodynamic, and kinetic coupling of a damage theory for polycrystalline material. Int. J. Plast. 26, 775–793 (2010)

    Article  MATH  Google Scholar 

  24. Xu, X.-P., Needleman, A.: Numerical simulations of fast crack growth in brittle solids. J. Mech. Phys. Solids 42, 1397–1434 (1994)

    Article  ADS  MATH  Google Scholar 

  25. Clayton, J.D.: Dynamic plasticity and fracture in high density polycrystals: constitutive modeling and numerical simulation. J. Mech. Phys. Solids 53, 261–301 (2005)

    Article  ADS  MATH  Google Scholar 

  26. Vogler, T.J., Clayton, J.D.: Heterogeneous deformation and spall of an extruded tungsten alloy: plate impact experiments and crystal plasticity modeling. J. Mech. Phys. Solids 56, 297–335 (2008)

    Article  ADS  Google Scholar 

  27. Foulk, J.W., Vogler, T.J.: A grain-scale study of spall in brittle materials. Int. J. Fract. 163, 225–242 (2010)

    Article  MATH  Google Scholar 

  28. Hou, T.Y., Rosakis, P., LeFloch, P.: A level-set approach to the computation of twinning and phase-transition dynamics. J. Comput. Phys. 150, 302–331 (1999)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  29. Del Piero, G., Lancioni, G., March, R.: A variational model for fracture mechanics: numerical experiments. J. Mech. Phys. Solids 55, 2513–2537 (2007)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  30. Kuhn, C., Müller, R.: A continuum phase field model for fracture. Eng. Fract. Mech. 77, 3625–3634 (2010)

    Article  Google Scholar 

  31. Clayton, J.D., Knap, J.: A geometrically nonlinear phase field theory of brittle fracture. Int. J. Fract. 189, 139–148 (2014)

    Article  Google Scholar 

  32. Weinberg, K., Hesch, C.: A high-order finite deformation phase-field approach to fracture. Contin. Mech. Thermodyn. 29, 935–945 (2017)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  33. Levitas, V.A., Levin, V.A., Zingerman, K.M., Freiman, E.I.: Displacive phase transitions at large strains: phase-field theory and simulations. Phys. Rev. Lett. 103, 025702 (2009)

    Article  ADS  Google Scholar 

  34. Clayton, J.D.: Phase field theory and analysis of pressure-shear induced amorphization and failure in boron carbide ceramic. AIMS Mater. Sci. 1, 143–158 (2014a)

    Article  Google Scholar 

  35. Schmitt, R., Kuhn, C., Müller, R.: On a phase field approach for martensitic transformations in a crystal plastic material at a loaded surface. Contin. Mech. Thermodyn. 29, 957–968 (2017)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  36. Clayton, J.D., Knap, J.: A phase field model of deformation twinning: nonlinear theory and numerical simulations. Phys. D 240, 841–858 (2011a)

    Article  MathSciNet  MATH  Google Scholar 

  37. Clayton, J.D., Knap, J.: Phase field modeling of twinning in indentation of transparent single crystals. Model. Simul. Mater. Sci. Eng. 19, 085005 (2011b)

    Article  ADS  Google Scholar 

  38. Clayton, J.D., Knap, J.: Phase field analysis of fracture induced twinning in single crystals. Acta Mater. 61, 5341–5353 (2013)

    Article  Google Scholar 

  39. Hildebrand, F.E., Miehe, C.: A phase field model for the formation and evolution of martensitic laminate microstructure at finite strains. Philos. Mag. 92, 4250–4290 (2012)

    Article  ADS  Google Scholar 

  40. Padilla, C.A.H., Markert, B.: A coupled ductile fracture phase-field model for crystal plasticity. Contin. Mech. Thermodyn. 29, 1017–1026 (2017)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  41. Clayton, J.D.: Finsler geometry of nonlinear elastic solids with internal structure. J. Geom. Phys. 112, 118–146 (2017a)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  42. Saczuk, J.: Finslerian Foundations of Solid Mechanics. Zeszyty naukowe Instytutu Maszyn Przeplywowych Polskiej Akademii Nauk w Gdansku, Wydawnictwo IMP PAN, Gdansk (1996)

    MATH  Google Scholar 

  43. Stumpf, H., Saczuk, J.: A generalized model of oriented continuum with defects. Zeitschrift für Angewandte Mathematik und Mechanik (ZAMM) 80, 147–169 (2000)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  44. Clayton, J.D.: Finsler-geometric continuum mechanics. Technical Report ARL-TR-7694, US Army Research Laboratory, Aberdeen Proving Ground MD (2016a)

  45. Clayton, J.D.: Generalized finsler geometric continuum physics with applications in fracture and phase transformations. Zeitschrift fur Angewandte Mathematik und Physik (ZAMP) 68, 9 (2017b)

  46. Clayton, J.D.: Finsler-geometric continuum mechanics and the micromechanics of fracture in crystals. J. Micromech. Mol. Phys. 1, 164003 (2016b)

    Article  Google Scholar 

  47. Clayton, J.D.: Finsler-geometric continuum dynamics and shock compression. Int. J. Fract. 208, 53–78 (2017c)

  48. Clayton, J.D., Kraft, R.H., Leavy, R.B.: Mesoscale modeling of nonlinear elasticity and fracture in ceramic polycrystals under dynamic shear and compression. Int. J. Solids Struct. 49, 2686–2702 (2012)

    Article  Google Scholar 

  49. Clayton, J.D., Knap, J.: Phase field modeling of directional fracture in anisotropic polycrystals. Comput. Mater. Sci. 98, 158–169 (2015a)

    Article  Google Scholar 

  50. Clayton, J.D., Knap, J.: Phase field modeling of coupled fracture and twinning in single crystals and polycrystals. Comput. Methods Appl. Mech. Eng. 312, 447–467 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  51. An, Q., Goddard, W.A.: Boron suboxide and boron subphosphide crystals: hard ceramics that shear without brittle failure. Chem. Mater. 27, 2855–2860 (2015b)

    Article  Google Scholar 

  52. Subhash, G., Awasthi, A.P., Kunka, C., Jannotti, P., DeVries, M.: In search of amorphization-resistant boron carbide. Scr. Mater. 123, 158–162 (2016)

    Article  Google Scholar 

  53. Bejancu, A.: Finsler Geometry and Applications. Ellis Horwood, New York (1990)

    MATH  Google Scholar 

  54. Rund, H.: A divergence theorem for Finsler metrics. Monatshefte fur Mathematik 79, 233–252 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  55. Clayton, J.D.: Differential Geometry and Kinematics of Continua. World Scientific, Singapore (2014b)

    Book  MATH  Google Scholar 

  56. Allen, S.M., Cahn, J.W.: A microscopic theory for antiphase boundary motion and its application to antiphase domain coarsening. Acta Metall. 27, 1085–1095 (1979)

    Article  Google Scholar 

  57. Levitas, V.I.: Phase field approach to martensitic phase transformations with large strains and interface stresses. J. Mech. Phys. Solids 70, 154–189 (2014)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  58. Clayton, J.D.: On anholonomic deformation, geometry, and differentiation. Math. Mech. Solids 17, 702–735 (2012b)

    Article  MathSciNet  Google Scholar 

  59. Clayton, J.D., Bammann, D.J., McDowell, D.L.: Anholonomic configuration spaces and metric tensors in finite strain elastoplasticity. In. J. Non-Linear Mech. 39, 1039–1049 (2004)

    Article  MATH  Google Scholar 

  60. Weyl, H.: Space-Time-Matter, fourth edn. Dover, New York (1952)

    Google Scholar 

  61. Clayton, J.D., Bammann, D.J., McDowell, D.L.: A geometric framework for the kinematics of crystals with defects. Philos. Mag. 85, 3983–4010 (2005)

    Article  ADS  Google Scholar 

  62. Clayton, J.D., McDowell, D.L., Bammann, D.J.: Modeling dislocations and disclinations with finite micropolar elastoplasticity. Int. J. Plast. 22, 210–256 (2006)

    Article  MATH  Google Scholar 

  63. Tjahjanto, D.D., Turteltaub, S., Suiker, A.S.J.: Crystallographically based model for transformation-induced plasticity in multiphase carbon steels. Contin. Mech. Thermodyn. 19, 399–422 (2008)

    Article  ADS  MATH  Google Scholar 

  64. Clayton, J.D., Knap, J.: Nonlinear phase field theory for fracture and twinning with analysis of simple shear. Philos. Mag. 95, 2661–2696 (2015b)

    Article  ADS  Google Scholar 

  65. Takaki, T., Hasebe, T., Tomita, Y.: Two-dimensional phase-field simulation of self-assembled quantum dot formation. J. Crystal Growth 287, 495–499 (2006)

    Article  ADS  Google Scholar 

  66. Boiko, V.S., Garber, R.I., Kosevich, A.M.: Reversible Crystal Plasticity. AIP Press, New York (1994)

    Google Scholar 

  67. Hirth, J.P., Lothe, J.: Theory of Dislocations. Wiley, New York (1982)

    MATH  Google Scholar 

  68. Rice, J.R.: Mathematical analysis in the mechanics of fracture. In: Liebowitz, H. (ed.) Fracture: An Advanced Treatise, pp. 191–311. Academic Press, New York (1968)

    Google Scholar 

  69. Beaudet, T.D., Smith, J.R., Adams, J.W.: Surface energy and relaxation in boron carbide \((10\bar{1}1)\) from first principles. Solid State Communications 219, 43–47 (2015)

    Article  ADS  Google Scholar 

  70. Dandekar, D. P.: Shock response of boron carbide. Technical Report ARL-TR-2456, US Army Research Laboratory, Aberdeen Proving Ground MD (2001)

  71. Ferdjani, H., Abdelmoula, R., Marigo, J.-J.: Insensitivity to small defects of the rupture of materials governed by the Dugdale model. Contin. Mech. Thermodyn. 19, 191–210 (2007)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  72. Bourne, N.K.: The relation of failure under 1D shock to the ballistic performance of brittle materials. Int. J. Impact Eng. 35, 674–683 (2008)

    Article  Google Scholar 

  73. Clayton, J.D.: Penetration resistance of armor ceramics: dimensional analysis and property correlations. Int. J. Impact Eng. 85, 124–131 (2015)

    Article  Google Scholar 

  74. Clayton, J.D.: Dimensional analysis and extended hydrodynamic theory applied to long-rod penetration of ceramics. Def. Technol. 12, 334–342 (2016c)

    Article  Google Scholar 

  75. Vogler, T.J., Reinhart, W.D., Chhabildas, L.C.: Dynamic behavior of boron carbide. J. Appl. Phys. 95, 4173–4183 (2004)

    Article  ADS  Google Scholar 

  76. Paliwal, B., Ramesh, K.T.: Effect of crack growth dynamics on the rate-sensitive behavior of hot-pressed boron carbide. Scr. Mater. 57, 481–484 (2007)

    Article  Google Scholar 

  77. Tang, B., An, Q., Goddard, W.A.: Improved ductility of boron carbide by microalloying with boron suboxide. J. Phys. Chem. C 119, 24649–24656 (2015)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. D. Clayton.

Additional information

Communicated by Andreas Öchsner.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Clayton, J.D., Knap, J. Continuum modeling of twinning, amorphization, and fracture: theory and numerical simulations. Continuum Mech. Thermodyn. 30, 421–455 (2018). https://doi.org/10.1007/s00161-017-0604-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00161-017-0604-8

Keywords

Navigation