Continuum Mechanics and Thermodynamics

, Volume 30, Issue 2, pp 301–317 | Cite as

Rigorous derivation of the effective model describing a non-isothermal fluid flow in a vertical pipe filled with porous medium

Original Article


This paper reports an analytical investigation of non-isothermal fluid flow in a thin (or long) vertical pipe filled with porous medium via asymptotic analysis. We assume that the fluid inside the pipe is cooled (or heated) by the surrounding medium and that the flow is governed by the prescribed pressure drop between pipe’s ends. Starting from the dimensionless Darcy–Brinkman–Boussinesq system, we formally derive a macroscopic model describing the effective flow at small Brinkman–Darcy number. The asymptotic approximation is given by the explicit formulae for the velocity, pressure and temperature clearly acknowledging the effects of the cooling (heating) and porous structure. The theoretical error analysis is carried out to indicate the order of accuracy and to provide a rigorous justification of the effective model.


Darcy–Brinkman–Boussinesq model Thin pipe Newton cooling condition Asymptotic approximation Error estimates 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



The first author of this work has been supported by the project GAČR 16-20008S. The second author of this work has been supported by the Croatian Science Foundation (scientific project 3955: Mathematical modeling and numerical simulations of processes in thin or porous domains). The authors would like to thank the referee for his/her thorough review and highly appreciate the comments and suggestions, which significantly contributed to improving the quality of the publication.


  1. 1.
    Allaire, G.: Homogenization of the Navier-Stokes equations in open sets perforated with thiny holes I. Abstract Framework, a volume distribution of holes. Arch. Rational. Mech. Anal. 113, 209–259 (1991)ADSCrossRefMATHGoogle Scholar
  2. 2.
    Beneš, M., Kučera, P.: Solutions of the Navier–Stokes equations with various types of boundary conditions. Arch. Math. 98, 487–497 (2012)MathSciNetCrossRefMATHGoogle Scholar
  3. 3.
    Beneš, M., Pažanin, I.: Homogenization of degenerate coupled fluid flows and heat transport through porous media. J. Math. Anal. Appl. 446, 165–192 (2017)MathSciNetCrossRefMATHGoogle Scholar
  4. 4.
    Bernardi, C., Métivet, B., Pernaud-Thomas, B.: Couplage des équations de Navier–Stokes et de la chaleur: le mod\(\grave{e}\)le et son approximation par éléments finis. Math. Modell. Numer. Anal. 29, 871–921 (1995)CrossRefMATHGoogle Scholar
  5. 5.
    Boussinesq, J.: Théorie Analytique de la Chaleur, vol. 2. Gauthier-Villars, Paris (1903)Google Scholar
  6. 6.
    Brinkman, H.: A calculation of the viscous force exerted by a flowing fluid on a dense swarm of particles. Appl. Sci. Res. A1, 27–34 (1947)MATHGoogle Scholar
  7. 7.
    Celik, H., Mobedi, M.: Visualization of heat flow in a vertical channel with fully developed mixed convection. Int. Commun. Heat Mass 39, 1253–1264 (2012)CrossRefGoogle Scholar
  8. 8.
    Chang, W.J., Chang, W.L.: Mixed convection in a vertical tube partially filled with porous medium. Numer. Heat Transf. A-Appl. 28, 739–754 (1995)ADSCrossRefGoogle Scholar
  9. 9.
    Conca, C., Murat, F., Pironneau, O.: The Stokes and Navier-Stokes equations with boundary conditions involving the pressure. Japan J. Math. 20, 263–318 (1994)MathSciNetCrossRefMATHGoogle Scholar
  10. 10.
    Darcy, H.: Les Fontaines Publiques de la ville de Dijon. Victor Darmon, Paris (1856)Google Scholar
  11. 11.
    Fabrie, P.: Solutions fortes et comportement asymptotique pour un mod\(\grave{e}\)le de convestion naturelle en milieu poreux. Acta Appl. Math. 7, 49–77 (1986)MathSciNetCrossRefMATHGoogle Scholar
  12. 12.
    Galdi, G.: An Introduction to the Mathematical Theory of the Navier–Stokes Equations, vol. I. Springer, New York (1994)MATHGoogle Scholar
  13. 13.
    Glowinski, R.: Finite element methods for incompressible viscous flow. In: Handbook of Numerical Analysis, vol. 9, pp. 3–1176. Elsevier (2003)Google Scholar
  14. 14.
    Gray, D.D., Ogretim, E., Bromhal, G.S.: Darcy flow in a wavy channel filled with a porous medium. Transp. Porous Media 98, 743–753 (2013)CrossRefGoogle Scholar
  15. 15.
    Heywood, J.G., Rannacher, R., Turek, S.: Artificial boundaries and flux and pressure conditions for the incompressible Navier-Stokes equations. Int. J. Numer. Methods Fluids 22, 325–352 (1996)ADSMathSciNetCrossRefMATHGoogle Scholar
  16. 16.
    Hannukainen, A., Juntunen, M., Stenberg, R.: Computations with finite element methods for the Brinkman problem. Comput. Geosci. 15, 155–166 (2011)CrossRefMATHGoogle Scholar
  17. 17.
    Hooman, K., Ranjbar-Kani, A.A.: A perturbation based analysis to investigate forced convection in a porous saturated tube. J. Comp. Appl. Math. 162, 411–419 (2004)ADSMathSciNetCrossRefMATHGoogle Scholar
  18. 18.
    Jamal-Abad, M.T., Saedodin, S., Aminy, M.: Variable conductivity in forced convection for a tube filled with porous media: a perturbation solution. Ain Shams Eng. J. (2016).
  19. 19.
    Kumar, A., Bera, P., Kumar, J.: Non-Darcy mixed convection in a vertical pipe filled with porous medium. Int. J. Therm. Sci. 50, 725–735 (2011)CrossRefGoogle Scholar
  20. 20.
    Kelliher, J.P., Temam, R., Wang, X.: Boundary layer associated with the Darcy–Brinkman–Boussinesq model for convection porous media. Physica D 240, 619–628 (2011)ADSMathSciNetCrossRefMATHGoogle Scholar
  21. 21.
    Levy, T.: Fluid flow through an array of fixed particles. Int. J. Eng. Sci. 21, 11–23 (1983)MathSciNetCrossRefMATHGoogle Scholar
  22. 22.
    Marušić-Paloka, E.: The effects of flexion and torsion for a fluid flow through a curved pipe. Appl. Math. Optim. 44, 245–272 (2001)MathSciNetCrossRefMATHGoogle Scholar
  23. 23.
    Marušić-Paloka, E.: Rigorous justification of the Kirchhoff law for junction of thin pipes filled with viscous fluid. Asymptot. Anal. 33, 51–66 (2003)MathSciNetMATHGoogle Scholar
  24. 24.
    Marušić-Paloka, E., Pažanin, I., Marušić, S.: Comparison between Darcy and Brinkman laws in a fracture. Appl. Math. Comput. 218, 7538–7545 (2012)MathSciNetMATHGoogle Scholar
  25. 25.
    Marušić-Paloka, E., Pažanin, I.: Non-isothermal fluid flow through a thin pipe with cooling. Appl. Anal. 88, 495–515 (2009)MathSciNetCrossRefMATHGoogle Scholar
  26. 26.
    Marušić-Paloka, E., Pažanin, I.: On the effects of curved geometry on heat conduction through a distorted pipe. Nonlinear Anal. RWA 11, 4554–4564 (2010)MathSciNetCrossRefMATHGoogle Scholar
  27. 27.
    Marušić-Paloka, E., Pažanin, I.: Fluid flow through a helical pipe. Z. Angew. Math. Phys. 58, 81–99 (2007)MathSciNetCrossRefMATHGoogle Scholar
  28. 28.
    Marušić-Paloka, E., Pažanin, I.: Modelling of heat transfer in a laminar flow through a helical pipe. Math. Comput. Model. 50, 1571–1582 (2009)MathSciNetCrossRefMATHGoogle Scholar
  29. 29.
    Marušić-Paloka, E., Pažanin, I.: On the Darcy-Brinkman flow through a channel with slightly perturbed boundary. Transp. Porous. Media 117, 27–44 (2017)MathSciNetCrossRefGoogle Scholar
  30. 30.
    Maz’ya, V., Rossmann, J.: \(L_p\) estimates of solutions to mixed boundary value problems for the Stokes system in polyhedral domains. Math. Nachr. 280, 751–793 (2007)MathSciNetCrossRefMATHGoogle Scholar
  31. 31.
    Merabet, N., Siyyam, H., Hamdan, M.H.: Analytical approach to the Darcy–Lapwood–Brinkman equation. Appl. Math. Comput. 196, 679–685 (2008)MathSciNetMATHGoogle Scholar
  32. 32.
    Ng, C.-O., Wang, C.Y.: Darcy–Brinkman flow through a corrugated channel. Transp. Porous Media 85, 605–618 (2010)MathSciNetCrossRefGoogle Scholar
  33. 33.
    Nield, D.A., Bejan, A.: Convection in Porous Media. Springer, New York (2006)MATHGoogle Scholar
  34. 34.
    Pažanin, I., Siddheshwar, P.G.: Analysis of the Laminar Newtonian fluid flow through a thin fracture modelled as fluid-saturated sparsely packed porous medium. Z. Naturforsch. A 71, 253–259 (2017)ADSGoogle Scholar
  35. 35.
    Sanchez-Palencia, E.: On the asymptotics of the fluid flow past an array of fixed obstacles. Int. J. Eng. Sci. 20, 1291–1301 (1982)MathSciNetCrossRefMATHGoogle Scholar
  36. 36.
    Srinivasan, S., Rajagopal, K.R.: A thermodynamic basis for the derivation of the Darcy, Forchheimer and Brinkman models for flows through porous media and their generalizations. Int. J. Nonlinear Mech. 58, 162–166 (2014)ADSCrossRefGoogle Scholar
  37. 37.
    Xu, X., Zhang, S.: A new divergence-free interpolation operator with applications to the darcy-stokes-brinkman equations. SIAM J. Sci. Comput. 32, 855–874 (2010)MathSciNetCrossRefMATHGoogle Scholar
  38. 38.
    Xie, X., Xu, J., Xue, G.: Uniformly-stable finite element methods for Darcy–Stokes–Brinkman models. J. Comput. Math. 26, 437–455 (2008)MathSciNetMATHGoogle Scholar
  39. 39.
    Yu, L.H., Wang, C.Y.: Darcy-Brinkman flow through a bumpy channel. Transp. Porous Media 97, 281–294 (2013)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2017

Authors and Affiliations

  1. 1.Department of Mathematics, Faculty of Civil EngineeringCzech Technical University in PraguePrague 6Czech Republic
  2. 2.Department of Mathematics, Faculty of ScienceUniversity of ZagrebZagrebCroatia

Personalised recommendations