Theory of defect dynamics in graphene: defect groupings and their stability

Abstract

We use our theory of periodized discrete elasticity to characterize defects in graphene as the cores of dislocations or groups of dislocations. Earlier numerical implementations of the theory predicted some of the simpler defect groupings observed in subsequent Transmission Electron Microscope experiments. Here, we derive the more complicated defect groupings of three or four defect pairs from our theory, show that they correspond to the cores of two pairs of dislocation dipoles and ascertain their stability.

This is a preview of subscription content, access via your institution.

References

  1. 1

    Novoselov K.S., Geim A.K., Morozov S.V., Jiang D., Zhang Y., Dubonos S.V., Grigorieva I.V., Firsov A.A.: Electric field effect in atomically thin carbon films. Science 306, 666–669 (2004)

    ADS  Article  Google Scholar 

  2. 2

    Geim A.K., Novoselov K.S.: The rise of graphene. Nat. Mater. 6, 183–191 (2007)

    ADS  Article  Google Scholar 

  3. 3

    Castro Neto A.H., Guinea F., Peres N.M.R., Novoselov K.S., Geim A.K.: The electronic properties of graphene. Rev. Mod. Phys. 81, 109–162 (2009)

    ADS  Article  Google Scholar 

  4. 4

    Vozmediano M.A.H., Katsnelson M.I., Guinea F.: Gauge fields in graphene. Phys. Rep. 496, 109–148 (2010)

    MathSciNet  ADS  Article  Google Scholar 

  5. 5

    Meyer J.C., Geim A.K., Katsnelson M.I., Novoselov K.S., Booth T.J., Roth S.: The structure of suspended graphene sheets. Nature 446, 60–63 (2007)

    ADS  Article  Google Scholar 

  6. 6

    Fasolino A., Los J.H., Katsnelson M.I.: Intrinsic ripples in graphene. Nat. Mater. 6, 858–861 (2007)

    ADS  Article  Google Scholar 

  7. 7

    Meyer J.C., Kisielowski C., Erni R., Rossell M.D., Crommie M.F., Zettl A.: Direct imaging of lattice atoms and topological defects in graphene membranes. Nano Lett. 8(11), 3582–3586 (2008)

    ADS  Article  Google Scholar 

  8. 8

    Wang X., Tabakman S.M., Dai H.: Atomic layer deposition of metal oxides on pristine and functionalized graphene. J. Am. Chem. Soc. 130, 8152–8153 (2008)

    Article  Google Scholar 

  9. 9

    Coleman, V.A., Knut, R., Karis, O., Grennberg, H., Jansson, U., Quinlan, R., Holloway, B.C., Sanyal, B., Eriksson, O.: Defect formation in graphene nanosheets by acid treatment: an x-ray absorption spectroscopy and density functional theory study. J. Phys. D Appl. Phys. 41, 062001 (2008) (4 p)

    Google Scholar 

  10. 10

    Gómez-Navarro C., Meyer J.C., Sundaram R.S., Chuvilin A., Kurasch S., Burghard M., Kern K., Kaiser U.: Atomic structure of reduced graphene oxide. Nano Lett. 10, 1144–1148 (2010)

    ADS  Article  Google Scholar 

  11. 11

    Meyer J.C., Chuvilin A., Algara-Siller G., Biskupek J., Kaiser U.: Selective sputtering and atomic resolution imaging of atomically thin boron nitride membranes. Nano Lett. 9, 2683–2689 (2009)

    ADS  Article  Google Scholar 

  12. 12

    Carpio, A., Bonilla, L.L., de Juan, F., Vozmediano, M.A.H.: Dislocations in graphene. New J. Phys. 10, 053021 (2008) (13 p)

    Google Scholar 

  13. 13

    Carpio, A., Bonilla, L.L.: Periodized discrete elasticity models for defects in graphene. Phys. Rev. B 78, 085406 (2008) (11 p)

    Google Scholar 

  14. 14

    Carpio, A., Bonilla, L.L.: Discrete models of dislocations and their motion in cubic crystals. Phys. Rev. B 71, 134105 (2005) (10 p)

    Google Scholar 

  15. 15

    Landau L.D., Lifshitz E.M.: Theory of Elasticity. 3rd edn. Pergamon Press, Oxford (1986)

    Google Scholar 

  16. 16

    Blakslee O.L., Proctor D.G., Seldin E.J., Spence G.B., Weng T.: Elastic constants of compression-annealed pyrolytic graphite. J. Appl. Phys. 41, 3373–3382 (1970)

    ADS  Article  Google Scholar 

  17. 17

    Zakharchenko K.V., Katsnelson M.I., Fasolino A.: Finite temperature lattice properties of graphene beyond the quasiharmonic approximation. Phys. Rev. Lett. 102, 046808 (2009)

    ADS  Article  Google Scholar 

  18. 18

    Lee C., Wei X., Kysar J.W., Hone J.: Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science 321, 385–388 (2008)

    ADS  Article  Google Scholar 

  19. 19

    Carpio, A., Bonilla, L.L.: Edge dislocations in crystal structures considered as traveling waves of discrete models. Phys. Rev. Lett. 90, 135502 (2003) (4 p)

    Google Scholar 

  20. 20

    Plans, I., Carpio, A., Bonilla, L.L.: Homogeneous nucleation of dislocations as bifurcations in a periodized discrete elasticity model. Europhys. Lett. 81, 36001 (2008) (6 p)

    Google Scholar 

  21. 21

    Plans I., Carpio A., Bonilla L.L.: Toy nanoindentation model and incipient plasticity. Chaos Solitons Fractals 42, 1623–1630 (2009)

    ADS  Article  Google Scholar 

  22. 22

    Girit C.O., Meyer J.C., Erni K., Rossell M.D., Kisielowski C., Yang L., Park C.-H., Crommie M.F., Cohen M.L., Louie S.G., Zettl A.: Graphene at the edge: stability and dynamics. Science 323, 1705–1708 (2009)

    ADS  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to L. L. Bonilla.

Additional information

Work financed by the Spanish Ministry of Science and Innovation under grants FIS2008-04921-C02-01 and FIS2008-04921-C02-01.

Communicated by L. Truskinovsky.

Electronic Supplementary Material

The Below is the Electronic Supplementary Material.

ESM 1 (MOV 412 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Bonilla, L.L., Carpio, A. Theory of defect dynamics in graphene: defect groupings and their stability. Continuum Mech. Thermodyn. 23, 337–346 (2011). https://doi.org/10.1007/s00161-011-0182-0

Download citation

Keywords

  • Graphene
  • Dislocations
  • Periodized discrete elasticity