Skip to main content
Log in

Mathematical modeling of magnetorheological fluids

  • Original article
  • Published:
Continuum Mechanics and Thermodynamics Aims and scope Submit manuscript

Abstract.

Magnetorheological (MR) fluids are a class of smart materials whose rheological properties may be rapidly modified by the application of a magnetic field. These materials typically consist of micron-sized ferrous particles dispersed in a fluid. In the present paper, we consider the full system of equations as well as the Clausius-Duhem inequality for moving isotropic MR fluids in an electro-magnetic field. We present the material constitutive relations for a non-Newtonian incompressible MR fluid. To illustrate the validity of the constitutive relations, the flow of a MR fluid between two parallel fixed plates under the influence of a constant magnetic field perpendicular to the flow direction is considered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Berkovsky, B.M., Medvedev, V.F., Krakov, M.S.: Magnetic Fluids - Engineering Applications. Oxford: Oxford University Press 1993

  2. Berkovsky, B.M.: Magnetic Fluids and Application Handbook. New York: Begell House 1996

  3. Blums, E., Cebers, A., Maiorov. M.M.: Magnetic Fluids. Berlin: Walter de Gruyter 1997

  4. Brigadnov, I.A.: Mathematical correctness and numerical methods for solution of the plasticity initial-boundary value problems. Mech. Solids 4, 62-74 (1996)

    Google Scholar 

  5. Brown, W.F.: Magnetoelastic Interactions. Springer, Berlin 1966

  6. Carlson, J.D., Catanzarite, D.M., St. Clair, K.A.: Commercial magnetorheological fluid devices. Int. J. Mod. Phys. B 10, 2857-2865 (1996)

    Google Scholar 

  7. Carlson, J.D., Jolly, M.R.: MR fluid, foam and elastomer devices. Mechatronics 10, 555-569 (2000)

    Article  Google Scholar 

  8. Drozdov, A.D.: Finite Elasticity and Viscoelasticity: A Course in the Nonlinear Mechanics of Solids. Singapure: World Scientific 1996

  9. Dyke, S.J., Spencer, B.F. Jr., Sain, M.K., Carslon, J.D.: Modeling and Control of Magnetorheological Dampers for Seimic Response Reduction. Smart Mat. Struct. 5, 565-575 (1996)

    Google Scholar 

  10. Eringen, A.C.: Mechanics of Continua. New York: Wiley 1980

  11. Eringen, A.C., Maugin, G.: Electrodynamics of Continua, Vol. I and II. New York: Springer 1989

  12. Felt, D.W., Hagenbüchle, M., Liu, J.: Rheology of a magnetorheological fluid. J. Intelligent Mater. Syst. Struct. 7, 589-593 (1996)

    Google Scholar 

  13. Hutter, K., van de Ven, A.A.F.:Field Matter Interactions in Thermoelastic Solids. Lecture Notes in Physics, vol. 88, Springer, Berlin 1978

  14. Jackson, J.D.: Klassische Elektrodynamik. Berlin: Walter de Gruyter (1983)

  15. Jolly, M.R., Carlson, J.D., Muñoz, B.C.: A model of the behaviour of magnetorheological materials. Smart Mater. Struct. 5, 607-614 (1996)

    Google Scholar 

  16. Jolly, M.R., Bender, J.W., Carlson, J.D.: Properties and application of commercial magnetorheological fluids. SPIE 5th Annual Int. Symp. on Smart Structures and Materials, San Diego, CA 1998

  17. Jolly, M.R., Bender, J.W., Mathers, R.T.: Indirect measurements of microstructure development in magnetorheological fluids. Int. J. Modern Phys. B 13, 2036-2043 (1999)

    Google Scholar 

  18. Kordonsky, W.: Magnetorheological effects as a base of new devices and technologies. J. Mag. Mag. Mater. 122, 395-398 (1993)

    Google Scholar 

  19. Kovetz, A.: Electromagnetic Theory. New York, Oxford: University Press 2000

  20. Lazareva, T.G., Kabisheva, I.V., Prodan, S.A.: Homogeneous magnetorheological materials. J. Intelligent Mater. Syst. Struct. 9, 655-661 (1998)

    Google Scholar 

  21. Lurie, A.I.: Nonlinear Theory of Elasticity. Amsterdam: North-Holland 1990

  22. Minkowski, H.: Die Grundgleichungen für die elektromagnetischen Vorgänge in bewegten Körpern. Göttinger Nach., 53-111 (1908)

  23. Mohebi, M., Jamashi, N., Flores, G.A., Jing Liu: Numerical study of the role of magnetic field ramping rate on the structure formation in magnetorheological fluids, Int. J. Modern Phys. 13, 2060-2067 (1999)

    Google Scholar 

  24. Nakato, M., Yamamoto, H.: Dynamic viscoelasticity of a magnetorheological fluid in oscillatory slit flow. Int. J. Modern Phys. 13, 2068-2076 (1999)

    Google Scholar 

  25. Nečas, J., Ŝilhavý, M.: Viscous Multipolar Fluids. Quart. Appl. Math. 49, 247-265 (1991)

    Google Scholar 

  26. Pao, Y.H.: Electromagnetic Forces in Deformable Continua. In: Nevat-Nasser, S. (ed.): Mechanics Today. Vol. 4. Pergamon Press, 1978, pp. 209-306

  27. Rabinow, J.: The magnetic fluid clutch. AIEE Trans. 67, 1308-1315 (1948)

    Google Scholar 

  28. Rajagopal, K.R., Yalamanchili, R.C., Wineman, A.S.: Modeling electro-rheological materials through mixture theory. Int. J. Engng. Sci. 32(3), 481-500 (1994)

    Google Scholar 

  29. Rajagopal, K.R., R\(\mathring{\textrm u}\)žička, M.: Mathematical modeling of electrorheological materials. Continuum Mech. Thermodyn. 13, 59-78 (2001)

    Google Scholar 

  30. Rajagopal, K.R., Tao, L.: Modeling of the microwave drying process of aqueous dielectrics. Z. angev. Math. Phys. 53, 923-948 (2002)

    Google Scholar 

  31. Rosensweig, R.E.: Ferrohydrodynamics. Cambridge: Cambridge University Press 1985

  32. Spencer, A.J.M.: Theory of Invariants. In: Eringen, A.c. (ed.): Continuum Physics Vol. 1. New York: Academic Press 1971

  33. Truesdell, C., Toupin, R.: The Classical Field Theories. In: Flügge, W. (ed.): Handbuch der Physik, Vol. III/1. New York: Springer 1960

  34. Truesdell, C.: Rational Thermodynamics. New York: Springer (1984)

  35. Truesdell, C.: First Course in Rational Continuum Mechanics, Vol. I. New York: Academic Press 1991

  36. Truesdell, C., Noll, W.: The Non-Linear Field Theories of Mechanics, 2nd edn. Berlin: Springer 1992

  37. Weiss, K.D., Carlson, J.D., Nixon, D.A.: Viscoelastic properties of magneto- and electrorheological fluids. J. Intell. Mater. Syst. & Struct. 5, 772-775 (1994)

    Google Scholar 

  38. Wineman, A.S., Rajagopal, K.R.: On constitutive equations for electrorheological materials. Continuum Mech. Thermodyn. 7, 1-22 (1995)

    Google Scholar 

  39. Winslow, W.M.: Induced vibration of suspensions. J. Appl. Phys. 20, 1137-1140 (1949)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Dorfmann.

Additional information

Communicated by K.R. Rajagopal

Received: 14 July 2003, Accepted: 18 May 2004, Published online: 22 February 2005

Correspondence to: A. Dorfmann

Rights and permissions

Reprints and permissions

About this article

Cite this article

Brigadnov, I.A., Dorfmann, A. Mathematical modeling of magnetorheological fluids. Continuum Mech. Thermodyn. 17, 29–42 (2005). https://doi.org/10.1007/s00161-004-0185-1

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00161-004-0185-1

Keywords:

Navigation