Adams FC, Fatuzzo M (1996) A theory of the initial mass function for star formation in molecular clouds. Astrophys J 464:256. https://doi.org/10.1086/177318. arXiv:astro-ph/9601139
ADS
Article
Google Scholar
Aguilar L, Hut P, Ostriker JP (1988) On the evolution of globular cluster systems. I. Present characteristics and rate of destruction in our Galaxy. Astrophys J 335:720–747. https://doi.org/10.1086/166961
ADS
Article
Google Scholar
Ahumada JA, Lapasset E (2007) New catalogue of blue stragglers in open clusters. Astron Astrophys 463:789–797. https://doi.org/10.1051/0004-6361:20054590
ADS
Article
Google Scholar
Alves-Brito A, Yong D, Meléndez J, Vásquez S, Karakas AI (2012) CNO and F abundances in the globular cluster M 22 (NGC 6656). Astron Astrophys 540:A3. https://doi.org/10.1051/0004-6361/201118623. arXiv:1202.0797
ADS
Article
Google Scholar
Anthony-Twarog BJ, Laird JB, Payne D, Twarog BA (1991) Ca II H and K filter photometry on the UVBY system. I—the standard system. Astron J 101:1902–1914. https://doi.org/10.1086/115815
ADS
Article
Google Scholar
Armandroff TE, Da Costa GS (1991) Metallicities for old stellar systems from Ca II triplet strengths in member giants. Astron J 101:1329–1337. https://doi.org/10.1086/115769
ADS
Article
Google Scholar
Armosky BJ, Sneden C, Langer GE, Kraft RP (1994) Abundance trends among neutron capture elements in giants of globular clusters M5, M3, M13, M92, and M15. Astron J 108:1364–1374. https://doi.org/10.1086/117158
ADS
Article
Google Scholar
Asplund M, Grevesse N, Sauval AJ, Scott P (2009) The chemical composition of the sun. Annu Rev Astron Astrophys 47:481–522. https://doi.org/10.1146/annurev.astro.46.060407.145222. arXiv:0909.0948
ADS
Article
Google Scholar
Bagdonas V, Drazdauskas A, Tautvaisiene G, Smiljanic R, Chorniy Y (2018) Chemical composition of giant stars in the open cluster IC 4756. Astrophysics 615:A165. https://doi.org/10.1051/0004-6361/201832695. arXiv:1804.01975
Article
Google Scholar
Balsara DS, Bendinelli AJ, Tilley DA, Massari AR, Howk JC (2008) Simulating anisotropic thermal conduction in supernova remnants—II. Implications for the interstellar medium. Mon Not R Astron Soc 386:642–656. https://doi.org/10.1111/j.1365-2966.2008.13121.x. arXiv:0711.2295
ADS
Article
Google Scholar
Banerjee S, Kroupa P (2015) The formation of NGC 3603 young starburst cluster: ‘prompt’ hierarchical assembly or monolithic starburst? Mon Not R Astron Soc 447:728–746. https://doi.org/10.1093/mnras/stu2445. arXiv:1412.1473
ADS
Article
Google Scholar
Bastian N, de Mink SE (2009) The effect of stellar rotation on colour-magnitude diagrams: on the apparent presence of multiple populations in intermediate age stellar clusters. Mon Not R Astron Soc 398(1):L11–L15. https://doi.org/10.1111/j.1745-3933.2009.00696.x. arXiv:0906.1590
ADS
Article
Google Scholar
Bastian N, Lardo C (2015) Globular cluster mass-loss in the context of multiple populations. Mon Not R Astron Soc 453:357–364. https://doi.org/10.1093/mnras/stv1661. arXiv:1507.05634
ADS
Article
Google Scholar
Bastian N, Lardo C (2018) Multiple stellar populations in globular clusters. Annu Rev Astron Astrophys 56:83–136. https://doi.org/10.1146/annurev-astro-081817-051839. arXiv:1712.01286
ADS
Article
Google Scholar
Bastian N, Strader J (2014) Constraining globular cluster formation through studies of young massive clusters—III. A lack of gas and dust in massive stellar clusters in the LMC and SMC. Mon Not R Astron Soc 443:3594–3600. https://doi.org/10.1093/mnras/stu1407. arXiv:1407.2726
ADS
Article
Google Scholar
Bastian N, Lamers HJGLM, de Mink SE, Longmore SN, Goodwin SP, Gieles M (2013) Early disc accretion as the origin of abundance anomalies in globular clusters. Mon Not R Astron Soc 436:2398–2411. https://doi.org/10.1093/mnras/stt1745. arXiv:1309.3566
ADS
Article
Google Scholar
Bastian N, Cabrera-Ziri I, Salaris M (2015) A general abundance problem for all self-enrichment scenarios for the origin of multiple populations in globular clusters. Mon Not R Astron Soc 449:3333–3346. https://doi.org/10.1093/mnras/stv543. arXiv:1503.03071
ADS
Article
Google Scholar
Bastian N, Kamann S, Cabrera-Ziri I, Georgy C, Ekström S, Charbonnel C, de Juan OM, Usher C (2018) Extended main sequence turnoffs in open clusters as seen by Gaia—I. NGC 2818 and the role of stellar rotation. Mon Not R Astron Soc 480:3739–3746. https://doi.org/10.1093/mnras/sty2100. arXiv:1807.10779
ADS
Article
Google Scholar
Baumgardt H, Hilker M (2018) A catalogue of masses, structural parameters, and velocity dispersion profiles of 112 Milky Way globular clusters. Mon Not R Astron Soc 478:1520–1557. https://doi.org/10.1093/mnras/sty1057. arXiv:1804.08359
ADS
Article
Google Scholar
Baumgardt H, Makino J (2003) Dynamical evolution of star clusters in tidal fields. Mon Not R Astron Soc 340:227–246. https://doi.org/10.1046/j.1365-8711.2003.06286.x. arXiv:astro-ph/0211471
ADS
Article
Google Scholar
Baumgardt H, Kroupa P, Parmentier G (2008) The influence of residual gas expulsion on the evolution of the Galactic globular cluster system and the origin of the Population II halo. Mon Not R Astron Soc 384:1231–1241. https://doi.org/10.1111/j.1365-2966.2007.12811.x. arXiv:0712.1591
ADS
Article
Google Scholar
Baumgardt H, Parmentier G, Gieles M, Vesperini E (2010) Evidence for two populations of Galactic globular clusters from the ratio of their half-mass to Jacobi radii. Mon Not R Astron Soc 401:1832–1838. https://doi.org/10.1111/j.1365-2966.2009.15758.x. arXiv:0909.5696
ADS
Article
Google Scholar
Baumgardt H, Parmentier G, Anders P, Grebel EK (2013) The star cluster formation history of the LMC. Mon Not R Astron Soc 430:676–685. https://doi.org/10.1093/mnras/sts667. arXiv:1207.5576
ADS
Article
Google Scholar
Baumgardt H, Hilker M, Sollima A, Bellini A (2019) Mean proper motions, space orbits, and velocity dispersion profiles of Galactic globular clusters derived from Gaia DR2 data. Mon Not R Astron Soc 482:5138–5155. https://doi.org/10.1093/mnras/sty2997. arXiv:1811.01507
ADS
Article
Google Scholar
Beasley MA, Baugh CM, Forbes DA, Sharples RM, Frenk CS (2002) On the formation of globular cluster systems in a hierarchical Universe. Mon Not R Astron Soc 333(2):383–399. https://doi.org/10.1046/j.1365-8711.2002.05402.x. arXiv:astro-ph/0202191
ADS
Article
Google Scholar
Bedin LR, Piotto G, Anderson J, Cassisi S, King IR, Momany Y, Carraro G (2004) \(\omega \) Centauri: the population puzzle goes deeper. Astrophys J Lett 605:L125–L128. https://doi.org/10.1086/420847. arXiv:astro-ph/0403112
ADS
Article
Google Scholar
Behr BB (2003) Chemical abundances and rotation velocities of blue horizontal-branch stars in six globular clusters. Astrophys J Suppl 149:67–99. https://doi.org/10.1086/377509. arXiv:astro-ph/0307178
ADS
Article
Google Scholar
Behr BB, Cohen JG, McCarthy JK, Djorgovski SG (1999) Striking photospheric abundance anomalies in blue horizontal-branch stars in globular cluster M13. Astrophys J Lett 517:L135–L138. https://doi.org/10.1086/312052. arXiv:astro-ph/9903437
ADS
Article
Google Scholar
Behr BB, Cohen JG, McCarthy JK (2000) Rotations and abundances of blue horizontal-branch stars in globular cluster M15. Astrophys J Lett 531:L37–L40. https://doi.org/10.1086/312524. arXiv:astro-ph/0002119
ADS
Article
Google Scholar
Bekki K (2010) Rotation and multiple stellar population in globular clusters. Astrophys J Lett 724:L99–L103. https://doi.org/10.1088/2041-8205/724/1/L99. arXiv:1010.3841
ADS
Article
Google Scholar
Bekki K (2011) Secondary star formation within massive star clusters: origin of multiple stellar populations in globular clusters. Mon Not R Astron Soc 412:2241–2259. https://doi.org/10.1111/j.1365-2966.2010.18047.x. arXiv:1011.5956
ADS
Article
Google Scholar
Bekki K, Freeman KC (2003) Formation of \(\omega \) Centauri from an ancient nucleated dwarf galaxy in the young Galactic disc. Mon Not R Astron Soc 346:L11–L15. https://doi.org/10.1046/j.1365-2966.2003.07275.x. arXiv:astro-ph/0310348
ADS
Article
Google Scholar
Bekki K, Tsujimoto T (2016) Formation of anomalous globular clusters with metallicity spreads: a unified picture. Astrophys J 831:70. https://doi.org/10.3847/0004-637X/831/1/70
ADS
Article
Google Scholar
Bekki K, Campbell SW, Lattanzio JC, Norris JE (2007) Origin of abundance inhomogeneity in globular clusters. Mon Not R Astron Soc 377:335–351. https://doi.org/10.1111/j.1365-2966.2007.11606.x. arXiv:astro-ph/0702289
ADS
Article
Google Scholar
Bellazzini M, Fusi Pecci F, Messineo M, Monaco L, Rood RT (2002) Deep Hubble Space Telescope WFPC2 photometry of NGC 288. I. Binary systems and blue stragglers. Astron J 123:1509–1527. https://doi.org/10.1086/339222. arXiv:astro-ph/0112343
ADS
Article
Google Scholar
Bellazzini M, Ibata RA, Chapman SC, Mackey AD, Monaco L, Irwin MJ, Martin NF, Lewis GF, Dalessandro E (2008) The nucleus of the Sagittarius dSph galaxy and M54: a window on the process of galaxy nucleation. Astron J 136:1147–1170. https://doi.org/10.1088/0004-6256/136/3/1147. arXiv:0807.0105
ADS
Article
Google Scholar
Bellazzini M, Bragaglia A, Carretta E, Gratton RG, Lucatello S, Catanzaro G, Leone F (2012) Na-O anticorrelation and HB. IX. Kinematics of the program clusters A link between systemic rotation and HB morphology? Astron Astrophys 538:A18. https://doi.org/10.1051/0004-6361/201118056. arXiv:1111.2688
ADS
Article
Google Scholar
Bellini A, Vesperini E, Piotto G, Milone AP, Hong J, Anderson J, van der Marel RP, Bedin LR, Cassisi S, D’Antona F, Marino AF, Renzini A (2015) The Hubble Space Telescope UV legacy survey of galactic globular clusters: the internal kinematics of the multiple stellar populations in NGC 2808. Astrophys J Lett 810:L13. https://doi.org/10.1088/2041-8205/810/1/L13. arXiv:1508.01804
ADS
Article
Google Scholar
Bellini A, Milone AP, Anderson J, Marino AF, Piotto G, van der Marel RP, Bedin LR, King IR (2017) The state-of-the-art HST astro-photometric analysis of the core of \(\omega \) Centauri. III. The main sequence’s multiple populations galore. Astrophys J 844:164. https://doi.org/10.3847/1538-4357/aa7b7e. arXiv:1706.07063
ADS
Article
Google Scholar
Benitez N, Dupke R, Moles M, Sodre L, Cenarro J, Marin-Franch A, Taylor K, Cristobal D, Fernandez-Soto A, Mendes de Oliveira C, Cepa-Nogue J, Abramo LR, Alcaniz JS, Overzier R, Hernandez-Monteagudo C, Alfaro EJ, Kanaan A, Carvano JM, Reis RRR, Martinez Gonzalez E, Ascaso B, Ballesteros F, Xavier HS, Varela J, Ederoclite A, Vazquez Ramio H, Broadhurst T, Cypriano E, Angulo R, Diego JM, Zandivarez A, Diaz E, Melchior P, Umetsu K, Spinelli PF, Zitrin A, Coe D, Yepes G, Vielva P, Sahni V, Marcos-Caballero A, Shu Kitaura F, Maroto AL, Masip M, Tsujikawa S, Carneiro S, Gonzalez Nuevo J, Carvalho GC, Reboucas MJ, Carvalho JC, Abdalla E, Bernui A, Pigozzo C, Ferreira EGM, Chandrachani Devi N, Bengaly CAP Jr, Campista M, Amorim A, Asari NV, Bongiovanni A, Bonoli S, Bruzual G, Cardiel N, Cava A, Cid Fernandes R, Coelho P, Cortesi A, Delgado RG, Diaz Garcia L, Espinosa JMR, Galliano E, Gonzalez-Serrano JI, Falcon-Barroso J, Fritz J, Fernandes C, Gorgas J, Hoyos C, Jimenez-Teja Y, Lopez-Aguerri JA, Lopez-San Juan C, Mateus A, Molino A, Novais P, OMill A, Oteo I, Perez-Gonzalez PG, Poggianti B, Proctor R, Ricciardelli E, Sanchez-Blazquez P, Storchi-Bergmann T, Telles E, Schoennell W, Trujillo N, Vazdekis A, Viironen K, Daflon S, Aparicio-Villegas T, Rocha D, Ribeiro T, Borges M, Martins SL, Marcolino W, Martinez-Delgado D, Perez-Torres MA, Siffert BB, Calvao MO, Sako M, Kessler R, Alvarez-Candal A, De Pra M, Roig F, Lazzaro D, Gorosabel J, Lopes de Oliveira R, Lima-Neto GB, Irwin J, Liu JF, Alvarez E, Balmes I, Chueca S, Costa-Duarte MV, da Costa AA, Dantas MLL, Diaz AY, Fabregat J, Ferrari F, Gavela B, Gracia SG, Gruel N, Gutierrez JLL, Guzman R, Hernandez-Fernandez JD, Herranz D, Hurtado-Gil L, Jablonsky F, Laporte R, Le Tiran LL, Licandro J, Lima M, Martin E, Martinez V, Montero JJC, Penteado P, Pereira CB, Peris V, Quilis V, Sanchez-Portal M, Soja AC, Solano E, Torra J, Valdivielso L (2014) J-PAS: The Javalambre-Physics of the Accelerated Universe Astrophysical Survey. arXiv e-prints arXiv:1403.5237
Bertelli G, Nasi E, Girardi L, Chiosi C, Zoccali M, Gallart C (2003) Testing intermediate-age stellar evolution models with VLT photometry of large magellanic cloud clusters. III. Padova results. Astrophys J 125:770–784. https://doi.org/10.1086/345961. arXiv:astro-ph/0211169
ADS
Article
Google Scholar
Beuther H, Churchwell EB, McKee CF, Tan JC (2007) The formation of massive stars. Protostars and planets V, pp 165–180. arXiv:astro-ph/0602012
Bloecker T (1995) Stellar evolution of low and intermediate-mass stars. I. Mass loss on the AGB and its consequences for stellar evolution. Astron Astrophys 297:727
ADS
Google Scholar
Boberg OM, Friel ED, Vesperini E (2015) Chemical abundances in NGC 5053: a very metal-poor and dynamically complex globular cluster. Astrophys J 804:109. https://doi.org/10.1088/0004-637X/804/2/109. arXiv:1504.01791
ADS
Article
Google Scholar
Boberg OM, Friel ED, Vesperini E (2016) Chemical abundances in NGC 5024 (M53): a mostly first generation globular cluster. Astrophys J 824:5. https://doi.org/10.3847/0004-637X/824/1/5
ADS
Article
Google Scholar
Böcek Topcu G, Afşar M, Sneden C (2016) The chemical compositions and evolutionary status of red giants in the open cluster NGC 6940. Mon Not R Astron Soc 463:580–597. https://doi.org/10.1093/mnras/stw1974
ADS
Article
Google Scholar
Bodenheimer P, Tenorio-Tagle G, Yorke HW (1979) The gas dynamics of H II regions. II. Two-dimensional axisymmetric calculations. Astrophys J 233:85–96. https://doi.org/10.1086/157368. arXiv:1906.09137
ADS
Article
Google Scholar
Bolte M (1992) CCD photometry in the globular cluster NGC 288. I. Blue stragglers and main-sequence binary stars. Astrophys J Suppl 82:145. https://doi.org/10.1086/191712
ADS
Article
Google Scholar
Bonatto C, Chies-Santos AL, Coelho PRT, Varela J, Larsen SS, Javier Cenarro A, San Roman I, Marín-Franch A, Mendes de Oliveira C, Molino A, Ederoclite A, Cortesi A, López-Sanjuan C, Cristóbal-Hornillos D, Vázquez Ramió H, Sodré L, Sampedro L, Costa-Duarte MV, Novais PM, Dupke R, Overzier RA, Ribeiro T, Santos WA, Schoennell W (2019) J-PLUS: a wide-field multi-band study of the M 15 globular cluster. Evidence of multiple stellar populations in the RGB. Astron Astrophys 622:A179. https://doi.org/10.1051/0004-6361/201732441. arXiv:1804.03966
Article
Google Scholar
Bonnell IA, Bate MR, Vine SG (2003) The hierarchical formation of a stellar cluster. Mon Not R Astron Soc 343:413–418. https://doi.org/10.1046/j.1365-8711.2003.06687.x. arXiv:astro-ph/0305082
ADS
Article
Google Scholar
Bonnell IA, Smith RJ, Clark PC, Bate MR (2011) The efficiency of star formation in clustered and distributed regions. Mon Not R Astron Soc 410:2339–2346. https://doi.org/10.1111/j.1365-2966.2010.17603.x. arXiv:1009.1152
ADS
Article
Google Scholar
Bragaglia A, Carretta E, Gratton R, D’Orazi V, Cassisi S, Lucatello S (2010a) Helium in first and second-generation stars in globular clusters from spectroscopy of red giants. Astron Astrophys 519:A60. https://doi.org/10.1051/0004-6361/201014702. arXiv:1005.2659
ADS
Article
Google Scholar
Bragaglia A, Carretta E, Gratton RG, Lucatello S, Milone A, Piotto G, D’Orazi V, Cassisi S, Sneden C, Bedin LR (2010b) X-shooter observations of main-sequence stars in the globular cluster NGC 2808: first chemical tagging of a He-normal and a He-rich dwarf. Astrophys J Lett 720:L41–L45. https://doi.org/10.1088/2041-8205/720/1/L41. arXiv:1007.5299
ADS
Article
Google Scholar
Bragaglia A, Gratton RG, Carretta E, D’Orazi V, Sneden C, Lucatello S (2012) Searching for multiple stellar populations in the massive, old open cluster Berkeley 39. Astron Astrophys 548:A122. https://doi.org/10.1051/0004-6361/201220366. arXiv:1211.1142
ADS
Article
Google Scholar
Bragaglia A, Sneden C, Carretta E, Gratton RG, Lucatello S, Bernath PF, Brooke JSA, Ram RS (2014) Searching for chemical signatures of multiple stellar populations in the old, massive open cluster NGC 6791. Astrophys J 796:68. https://doi.org/10.1088/0004-637X/796/1/68. arXiv:1409.8283
ADS
Article
Google Scholar
Bragaglia A, Carretta E, Sollima A, Donati P, D’Orazi V, Gratton RG, Lucatello S, Sneden C (2015) NGC 6139: a normal massive globular cluster, or a first-generation dominated cluster? Clues from the light elements. Astron Astrophys 583:A69. https://doi.org/10.1051/0004-6361/201526592. arXiv:1507.07562
ADS
Article
Google Scholar
Bragaglia A, Carretta E, D’Orazi V, Sollima A, Donati P, Gratton RG, Lucatello S (2017) NGC 6535: the lowest mass Milky Way globular cluster with a Na–O anti-correlation? Cluster mass and age in the multiple population context. Astron Astrophys 607:A44. https://doi.org/10.1051/0004-6361/201731526. arXiv:1708.07705
ADS
Article
Google Scholar
Bragaglia A, Fu X, Mucciarelli A, Andreuzzi G, Donati P (2018) The chemical composition of the oldest nearby open cluster Ruprecht 147. Astron Astrophys 619:A176. https://doi.org/10.1051/0004-6361/201833888. arXiv:1809.06868
ADS
Article
Google Scholar
Briley MM, Cohen JG (2001) Calibration of the CH and CN variations among main-sequence stars in M71 and in M13. Astron J 122:242–247. https://doi.org/10.1086/321115. arXiv:astro-ph/0104099
ADS
Article
Google Scholar
Briley MM, Cohen JG, Stetson PB (2004) The chemical inhomogeneity of faint M13 stars: carbon and nitrogen abundances. Astron J 127:1579–1587. https://doi.org/10.1086/382100. arXiv:astro-ph/0312315
ADS
Article
Google Scholar
Brodie JP, Strader J (2006) Extragalactic globular clusters and galaxy formation. Annu Rev Astron Astrophys 44:193–267. https://doi.org/10.1146/annurev.astro.44.051905.092441. arXiv:astro-ph/0602601
ADS
Article
Google Scholar
Çalışkan Ş, Christlieb N, Grebel EK (2012) Abundance analysis of the outer halo globular cluster Palomar 14. Astron Astrophys 537:A83. https://doi.org/10.1051/0004-6361/201016355. arXiv:1110.5151
ADS
Article
Google Scholar
Cabrera-Ziri I, Bastian N, Longmore SN, Brogan C, Hollyhead K, Larsen SS, Whitmore B, Johnson K, Chandar R, Henshaw JD, Davies B, Hibbard JE (2015) Constraining globular cluster formation through studies of young massive clusters—V. ALMA observations of clusters in the Antennae. Mon Not R Astron Soc 448:2224–2231. https://doi.org/10.1093/mnras/stv163. arXiv:1501.05657
ADS
Article
Google Scholar
Cabrera-Ziri I, Lardo C, Mucciarelli A (2019) Constant light element abundances suggest that the extended P1 in NGC 2808 is not a consequence of CNO-cycle nucleosynthesis. Mon Not R Astron Soc. https://doi.org/10.1093/mnras/stz707. arXiv:1903.03621
ADS
Article
Google Scholar
Calura F, Few CG, Romano D, D’Ercole A (2015) Feedback from massive stars and gas expulsion from proto-globular clusters. Astrophys J Lett 814:L14. https://doi.org/10.1088/2041-8205/814/1/L14. arXiv:1511.03277
ADS
Article
Google Scholar
Calura F, D’Ercole A, Vesperini E, Vanzella E, Sollima A (2019) Formation of second-generation stars in globular clusters. Mon Not R Astron Soc 489:3269–3284. https://doi.org/10.1093/mnras/stz2055. arXiv:1906.09137
ADS
Article
Google Scholar
Cameron AGW, Fowler WA (1971) Lithium and the s-process in red-giant stars. Astrophys J 164:111. https://doi.org/10.1086/150821
ADS
Article
Google Scholar
Campbell SW, Lattanzio JC, Elliott LM (2006) Are there radical cyanogen abundance differences between galactic globular cluster RGB and AGB stars? Mem Soc Astron Ital 77:864. arXiv:astro-ph/0603779
Campbell SW, D’Orazi V, Yong D, Constantino TN, Lattanzio JC, Stancliffe RJ, Angelou GC, Wylie-de Boer EC, Grundahl F (2013) Sodium content as a predictor of the advanced evolution of globular cluster stars. Nature 498:198–200. https://doi.org/10.1038/nature12191. arXiv:1305.7090
ADS
Article
Google Scholar
Campbell SW, MacLean BT, D’Orazi V, Casagrande L, de Silva GM, Yong D, Cottrell PL, Lattanzio JC (2017) NGC 6752 AGB stars revisited. I. Improved AGB temperatures remove apparent overionisation of Fe I. Astron Astrophys 605:A98. https://doi.org/10.1051/0004-6361/201731101. arXiv:1707.02840
Article
Google Scholar
Cantat-Gaudin T, Vallenari A, Zaggia S, Bragaglia A, Sordo R, Drew JE, Eisloeffel J, Farnhill HJ, Gonzalez-Solares E, Greimel R, Irwin MJ, Kupcu-Yoldas A, Jordi C, Blomme R, Sampedro L, Costado MT, Alfaro E, Smiljanic R, Magrini L, Donati P, Friel ED, Jacobson H, Abbas U, Hatzidimitriou D, Spagna A, Vecchiato A, Balaguer-Nunez L, Lardo C, Tosi M, Pancino E, Klutsch A, Tautvaisiene G, Drazdauskas A, Puzeras E, Jiménez-Esteban F, Maiorca E, Geisler D, San Roman I, Villanova S, Gilmore G, Randich S, Bensby T, Flaccomio E, Lanzafame A, Recio-Blanco A, Damiani F, Hourihane A, Jofré P, de Laverny P, Masseron T, Morbidelli L, Prisinzano L, Sacco GG, Sbordone L, Worley CC (2014) The Gaia-ESO Survey: Stellar content and elemental abundances in the massive cluster NGC 6705. Astron Astrophys 569:A17. https://doi.org/10.1051/0004-6361/201423851. arXiv:1407.1510
Article
Google Scholar
Carballo-Bello JA, Sollima A, Martínez-Delgado D, Pila-Díez B, Leaman R, Fliri J, Muñoz RR, Corral-Santana JM (2014) A search for stellar tidal debris of defunct dwarf galaxies around globular clusters in the inner Galactic halo. Mon Not R Astron Soc 445:2971–2993. https://doi.org/10.1093/mnras/stu1949. arXiv:1409.7390
ADS
Article
Google Scholar
Carretta E (2006) Abundances in Red Giant Stars of NGC 2808 and correlations between chemical anomalies and global parameters in globular clusters. Astron J 131:1766–1783. https://doi.org/10.1086/499565. arXiv:astro-ph/0511144
ADS
Article
Google Scholar
Carretta E (2014) Three discrete groups with homogeneous chemistry along the Red Giant Branch in the globular cluster NGC 2808. Astrophys J Lett 795:L28. https://doi.org/10.1088/2041-8205/795/2/L28. arXiv:1410.3476
ADS
Article
Google Scholar
Carretta E (2015) Five groups of red giants with distinct chemical composition in the globular cluster NGC 2808. Astrophys J 810:148. https://doi.org/10.1088/0004-637X/810/2/148. arXiv:1507.07553
ADS
Article
Google Scholar
Carretta E (2016) Spectroscopic evidence of multiple stellar populations in globular clusters. arXiv e-prints. arXiv:1611.04728
Carretta E (2019) Empirical estimates of the Na–O anti-correlation in 95 Galactic globular clusters. Astron Astrophys 624:A24. https://doi.org/10.1051/0004-6361/201935110. arXiv:1903.04494
ADS
Article
Google Scholar
Carretta E, Bragaglia A (2018) Observing multiple populations in globular clusters with the ESO archive: NGC 6388 reloaded. Astron Astrophys 614:A109. https://doi.org/10.1051/0004-6361/201832660. arXiv:1802.06787
ADS
Article
Google Scholar
Carretta E, Bragaglia A, Cacciari C, Rossetti E (2003) Proton capture elements in the globular cluster NGC 2808. I. First detection of large variations in sodium abundances along the Red Giant Branch. Astron Astrophys 410:143–154. https://doi.org/10.1051/0004-6361:20031315. arXiv:astro-ph/0309021
ADS
Article
Google Scholar
Carretta E, Bragaglia A, Cacciari C (2004) Star-to-Star Na and O abundance variations along the Red Giant Branch in NGC 2808. Astrophys J Lett 610:L25–L28. https://doi.org/10.1086/423034. arXiv:astro-ph/0406119
ADS
Article
Google Scholar
Carretta E, Gratton RG, Lucatello S, Bragaglia A, Bonifacio P (2005) Abundances of C, N, O in slightly evolved stars in the globular clusters NGC 6397, NGC 6752 and 47 Tuc. Astron Astrophys 433:597–611. https://doi.org/10.1051/0004-6361:20041892. arXiv:astro-ph/0411241
ADS
Article
Google Scholar
Carretta E, Bragaglia A, Gratton RG, Leone F, Recio-Blanco A, Lucatello S (2006) Na–O anticorrelation and HB. I. The Na–O anticorrelation in NGC 2808. Astron Astrophys 450:523–533. https://doi.org/10.1051/0004-6361:20054369. arXiv:astro-ph/0511833
ADS
Article
Google Scholar
Carretta E, Bragaglia A, Gratton RG, Lucatello S, Momany Y (2007) Na–O anticorrelation and horizontal branches. II. The Na–O anticorrelation in the globular cluster NGC 6752. Astron Astrophys 464:927–937. https://doi.org/10.1051/0004-6361:20065208. arXiv:astro-ph/0701174
ADS
Article
Google Scholar
Carretta E, Bragaglia A, Gratton R, D’Orazi V, Lucatello S (2009a) Intrinsic iron spread and a new metallicity scale for globular clusters. Astron Astrophys 508:695–706. https://doi.org/10.1051/0004-6361/200913003. arXiv:0910.0675
ADS
Article
Google Scholar
Carretta E, Bragaglia A, Gratton R, Lucatello S (2009b) Na–O anticorrelation and HB. VIII. Proton-capture elements and metallicities in 17 globular clusters from UVES spectra. Astron Astrophys 505:139–155. https://doi.org/10.1051/0004-6361/200912097. arXiv:0909.2941
ADS
Article
Google Scholar
Carretta E, Bragaglia A, Gratton RG, Lucatello S, Catanzaro G, Leone F, Bellazzini M, Claudi R, D’Orazi V, Momany Y, Ortolani S, Pancino E, Piotto G, Recio-Blanco A, Sabbi E (2009c) Na–O anticorrelation and HB. VII. The chemical composition of first and second-generation stars in 15 globular clusters from GIRAFFE spectra. Astron Astrophys 505:117–138. https://doi.org/10.1051/0004-6361/200912096. arXiv:0909.2938
ADS
Article
Google Scholar
Carretta E, Bragaglia A, Gratton RG, Lucatello S, Bellazzini M, Catanzaro G, Leone F, Momany Y, Piotto G, D’Orazi V (2010a) Detailed abundances of a large sample of giant stars in M 54 and in the Sagittarius nucleus. Astron Astrophys 520:A95. https://doi.org/10.1051/0004-6361/201014924. arXiv:1006.5866
ADS
Article
Google Scholar
Carretta E, Bragaglia A, Gratton RG, Lucatello S, Bellazzini M, Catanzaro G, Leone F, Momany Y, Piotto G, D’Orazi V (2010b) M54 + Sagittarius = \(\omega \) Centauri. Astrophys J Lett 714:L7–L11. https://doi.org/10.1088/2041-8205/714/1/L7. arXiv:1002.1963
ADS
Article
Google Scholar
Carretta E, Bragaglia A, Gratton RG, Recio-Blanco A, Lucatello S, D’Orazi V, Cassisi S (2010c) Properties of stellar generations in globular clusters and relations with global parameters. Astron Astrophys 516:A55. https://doi.org/10.1051/0004-6361/200913451. arXiv:1003.1723
ADS
Article
Google Scholar
Carretta E, Bragaglia A, Gratton R, D’Orazi V, Lucatello S (2011a) A Strömgren view of the multiple populations in globular clusters. Astron Astrophys 535:A121. https://doi.org/10.1051/0004-6361/201117180. arXiv:1109.3199
ADS
Article
Google Scholar
Carretta E, Lucatello S, Gratton RG, Bragaglia A, D’Orazi V (2011b) Multiple stellar populations in the globular cluster NGC 1851. Astron Astrophys 533:A69. https://doi.org/10.1051/0004-6361/201117269. arXiv:1106.3174
ADS
Article
Google Scholar
Carretta E, Bragaglia A, Gratton RG, Lucatello S, D’Orazi V (2012) Chemical tagging of three distinct populations of red giants in the globular cluster NGC 6752. Astrophys J Lett 750:L14. https://doi.org/10.1088/2041-8205/750/1/L14. arXiv:1204.0259
ADS
Article
Google Scholar
Carretta E, Bragaglia A, Gratton RG, Lucatello S, D’Orazi V, Bellazzini M, Catanzaro G, Leone F, Momany Y, Sollima A (2013a) NGC 362: another globular cluster with a split red giant branch. Astron Astrophys 557:A138. https://doi.org/10.1051/0004-6361/201321905. arXiv:1307.4085
ADS
Article
Google Scholar
Carretta E, Gratton RG, Bragaglia A, D’Orazi V, Lucatello S, Sollima A, Sneden C (2013b) Potassium in globular cluster stars: comparing normal clusters to the peculiar cluster NGC 2419. Astrophys J 769:40. https://doi.org/10.1088/0004-637X/769/1/40. arXiv:1303.4740
ADS
Article
Google Scholar
Carretta E, Bragaglia A, Gratton RG, D’Orazi V, Lucatello S, Sollima A (2014) Terzan 8: a Sagittarius-flavoured globular cluster. Astron Astrophys 561:A87. https://doi.org/10.1051/0004-6361/201322676. arXiv:1311.2589
ADS
Article
Google Scholar
Carretta E, Bragaglia A, Gratton RG, D’Orazi V, Lucatello S, Sollima A, Momany Y, Catanzaro G, Leone F (2015) The normal chemistry of multiple stellar populations in the dense globular cluster NGC 6093 (M 80). Astron Astrophys 578:A116. https://doi.org/10.1051/0004-6361/201525951. arXiv:1503.03074
ADS
Article
Google Scholar
Carretta E, Bragaglia A, Lucatello S, D’Orazi V, Gratton RG, Donati P, Sollima A, Sneden C (2017) Chemical characterisation of the globular cluster NGC 5634 associated to the Sagittarius dwarf spheroidal galaxy. Astron Astrophys 600:A118. https://doi.org/10.1051/0004-6361/201630004. arXiv:1701.03116
ADS
Article
Google Scholar
Carretta E, Bragaglia A, Lucatello S, Gratton RG, D’Orazi V, Sollima A (2018) Aluminium abundances in five discrete stellar populations of the globular cluster NGC 2808. Astron Astrophys 615:A17. https://doi.org/10.1051/0004-6361/201732324. arXiv:1801.09689
ADS
Article
Google Scholar
Cassisi S, Salaris M (1997) A critical investigation on the discrepancy between the observational and the theoretical red giant luminosity function ‘bump’. Mon Not R Astron Soc 285(3):593–603. https://doi.org/10.1093/mnras/285.3.593. arXiv:astro-ph/9702029
ADS
Article
Google Scholar
Cassisi S, Marín-Franch A, Salaris M, Aparicio A, Monelli M, Pietrinferni A (2011) The magnitude difference between the main sequence turn off and the red giant branch bump in Galactic globular clusters. Astron Astrophys 527:A59. https://doi.org/10.1051/0004-6361/201016066. arXiv:1012.0419
ADS
Article
Google Scholar
Cassisi S, Salaris M, Pietrinferni A, Vink JS, Monelli M (2014) On the missing second generation AGB stars in NGC 6752. Astron Astrophys 571:A81. https://doi.org/10.1051/0004-6361/201424540. arXiv:1410.3599
ADS
Article
Google Scholar
Cassisi S, Salaris M, Pietrinferni A, Hyder D (2017) On the determination of the He abundance distribution in globular clusters from the width of the main sequence. Mon Not R Astron Soc 464:2341–2348. https://doi.org/10.1093/mnras/stw2579. arXiv:1610.01755
ADS
Article
Google Scholar
Catelan M (2009) Horizontal branch stars: the interplay between observations and theory, and insights into the formation of the Galaxy. Astrophys Space Sci 320:261–309. https://doi.org/10.1007/s10509-009-9987-8. arXiv:astro-ph/0507464
ADS
Article
MATH
Google Scholar
Chabrier G, Hennebelle P, Charlot S (2014) Variations of the Stellar initial mass function in the progenitors of massive early-type Galaxies and in extreme starburst environments. Astrophys J 796:75. https://doi.org/10.1088/0004-637X/796/2/75. arXiv:1409.8466
ADS
Article
Google Scholar
Chantereau W, Salaris M, Bastian N, Martocchia S (2019) Helium enrichment in intermediate-age Magellanic Clouds clusters: towards an ubiquity of multiple stellar populations? Mon Not R Astron Soc 484:5236–5244. https://doi.org/10.1093/mnras/stz378. arXiv:1902.01806
ADS
Article
Google Scholar
Charbonnel C, Chantereau W, Krause M, Primas F, Wang Y (2014) Are there any first-generation stars in globular clusters today? Astron Astrophys 569:L6. https://doi.org/10.1051/0004-6361/201424804. arXiv:1410.3967
ADS
Article
Google Scholar
Cohen JG (2004) Palomar 12 as a part of the Sagittarius stream: the evidence from abundance ratios. Astron J 127:1545–1554. https://doi.org/10.1086/382104. arXiv:astro-ph/0311187
ADS
Article
Google Scholar
Cohen JG, Briley MM, Stetson PB (2002) Carbon and nitrogen abundances in stars at the base of the red giant branch in M5. Astron J 123:2525–2540. https://doi.org/10.1086/340179. arXiv:astro-ph/0112199
ADS
Article
Google Scholar
Cordero MJ, Pilachowski CA, Johnson CI, McDonald I, Zijlstra AA, Simmerer J (2014) Detailed abundances for a large sample of Giant Stars in the Globular Cluster 47 Tucanae (NGC 104). Astrophys J 780:94. https://doi.org/10.1088/0004-637X/780/1/94. arXiv:1311.1541
ADS
Article
Google Scholar
Cordero MJ, Hénault-Brunet V, Pilachowski CA, Balbinot E, Johnson CI, Varri AL (2017) Differences in the rotational properties of multiple stellar populations in M13: a faster rotation for the ‘extreme’ chemical subpopulation. Mon Not R Astron Soc 465:3515–3535. https://doi.org/10.1093/mnras/stw2812. arXiv:1610.09374
ADS
Article
Google Scholar
Cowan JJ, Sneden C, Lawler JE, Aprahamian A, Wiescher M, Langanke K, Martínez-Pinedo G, Thielemann FK (2019) Making the Heaviest Elements in the Universe: A Review of the Rapid Neutron Capture Process. arXiv e-prints. arXiv:1901.01410
Cristallo S, Straniero O, Gallino R, Piersanti L, Domínguez I, Lederer MT (2009) Evolution, nucleosynthesis, and yields of low-mass asymptotic giant branch stars at different metallicities. Astrophys J 696:797–820. https://doi.org/10.1088/0004-637X/696/1/797. arXiv:0902.0243
ADS
Article
Google Scholar
Cristallo S, Straniero O, Piersanti L, Gobrecht D (2015) Evolution, nucleosynthesis, and yields of AGB stars at different metallicities. III. Intermediate-mass models, revised low-mass models, and the ph-FRUITY interface. Astrophys J Suppl Ser 219(2):40. https://doi.org/10.1088/0067-0049/219/2/40. arXiv:1507.07338
ADS
Article
Google Scholar
Cummings JD, Kalirai JS, Tremblay PE, Ramirez-Ruiz E, Choi J (2018) The white dwarf initial-final mass relation for progenitor stars from 0.85 to 7.5 M \(_{\odot }\). Astrophys J 866:21. https://doi.org/10.3847/1538-4357/aadfd6. arXiv:1809.01673
ADS
Article
Google Scholar
Cunha K, Smith VV, Johnson JA, Bergemann M, Mészáros S, Shetrone MD, Souto D, Allende Prieto C, Schiavon RP, Frinchaboy P, Zasowski G, Bizyaev D, Holtzman J, García Pérez AE, Majewski SR, Nidever D, Beers T, Carrera R, Geisler D, Gunn J, Hearty F, Ivans I, Martell S, Pinsonneault M, Schneider DP, Sobeck J, Stello D, Stassun KG, Skrutskie M, Wilson JC (2015) Sodium and oxygen abundances in the open cluster NGC 6791 from APOGEE H-band spectroscopy. Astrophys J Lett 798:L41. https://doi.org/10.1088/2041-8205/798/2/L41. arXiv:1411.2034
ADS
Article
Google Scholar
Da Costa GS (2016) The Ca II triplet in red giant spectra: [Fe/H] determinations and the role of [Ca/Fe]. Mon Not R Astron Soc 455:199–206. https://doi.org/10.1093/mnras/stv2315. arXiv:1510.00766
ADS
Article
Google Scholar
Da Costa GS, Held EV, Saviane I (2014) NGC 5824: a luminous outer halo globular cluster with an intrinsic abundance spread. Mon Not R Astron Soc 438:3507–3520. https://doi.org/10.1093/mnras/stt2467. arXiv:1312.5796
ADS
Article
Google Scholar
Dabringhausen J, Hilker M, Kroupa P (2008) From star clusters to dwarf galaxies: the properties of dynamically hot stellar systems. Mon Not R Astron Soc 386:864–886. https://doi.org/10.1111/j.1365-2966.2008.13065.x. arXiv:0802.0703
ADS
Article
Google Scholar
Dale JE, Bonnell I (2011) Ionizing feedback from massive stars in massive clusters: fake bubbles and untriggered star formation. Mon Not R Astron Soc 414:321–328. https://doi.org/10.1111/j.1365-2966.2011.18392.x. arXiv:1103.1532
ADS
Article
Google Scholar
Dalessandro E, Salaris M, Ferraro FR, Cassisi S, Lanzoni B, Rood RT, Fusi Pecci F, Sabbi E (2011) The peculiar horizontal branch of NGC 2808. Mon Not R Astron Soc 410:694–704. https://doi.org/10.1111/j.1365-2966.2010.17479.x. arXiv:1008.4478
ADS
Article
Google Scholar
Dalessandro E, Salaris M, Ferraro FR, Mucciarelli A, Cassisi S (2013) The horizontal branch in the UV colour-magnitude diagrams—II. The case of M3, M13 and M79. Mon Not R Astron Soc 430:459–471. https://doi.org/10.1093/mnras/sts644. arXiv:1212.4419
ADS
Article
Google Scholar
Dalessandro E, Massari D, Bellazzini M, Miocchi P, Mucciarelli A, Salaris M, Cassisi S, Ferraro FR, Lanzoni B (2014) First evidence of fully spatially mixed first and second generations in globular clusters: the case of NGC 6362. Astrophys J Lett 791:L4. https://doi.org/10.1088/2041-8205/791/1/L4. arXiv:1407.0484
ADS
Article
Google Scholar
Dalessandro E, Lapenna E, Mucciarelli A, Origlia L, Ferraro FR, Lanzoni B (2016) Multiple populations in the old and massive small magellanic cloud globular cluster NGC 121. Astrophys J 829:77. https://doi.org/10.3847/0004-637X/829/2/77. arXiv:1607.05736
ADS
Article
Google Scholar
Dalessandro E, Cadelano M, Vesperini E, Salaris M, Ferraro FR, Lanzoni B, Raso S, Hong J, Webb JJ, Zocchi A (2018a) The peculiar radial distribution of multiple populations in the massive globular cluster M80. Astrophys J 859:15. https://doi.org/10.3847/1538-4357/aabb56. arXiv:1804.03222
ADS
Article
Google Scholar
Dalessandro E, Lardo C, Cadelano M, Saracino S, Bastian N, Mucciarelli A, Salaris M, Stetson P, Pancino E (2018b) IC 4499 revised: spectro-photometric evidence of small light-element variations. Astron Astrophys 618:A131. https://doi.org/10.1051/0004-6361/201833650. arXiv:1807.07618
ADS
Article
Google Scholar
Dalessandro E, Mucciarelli A, Bellazzini M, Sollima A, Vesperini E, Hong J, Hénault-Brunet V, Ferraro FR, Ibata R, Lanzoni B, Massari D, Salaris M (2018c) The unexpected kinematics of multiple populations in NGC 6362: do binaries play a role? Astrophys J 864:33. https://doi.org/10.3847/1538-4357/aad4b3. arXiv:1807.07918
ADS
Article
Google Scholar
D’Antona F, Caloi V (2004) The early evolution of globular clusters: the case of NGC 2808. Astrophys J 611:871–880. https://doi.org/10.1086/422334. arXiv:astro-ph/0405016
ADS
Article
Google Scholar
D’Antona F, Caloi V, Montalbán J, Ventura P, Gratton R (2002) Helium variation due to self-pollution among Globular Cluster stars. Consequences on the horizontal branch morphology. Astron Astrophys 395:69–75. https://doi.org/10.1051/0004-6361:20021220. arXiv:astro-ph/0209331
ADS
Article
Google Scholar
D’Antona F, Bellazzini M, Caloi V, Pecci FF, Galleti S, Rood RT (2005) A helium spread among the main-sequence stars in NGC 2808. Astrophys J 631:868–878. https://doi.org/10.1086/431968. arXiv:astro-ph/0505347
ADS
Article
Google Scholar
D’Antona F, D’Ercole A, Carini R, Vesperini E, Ventura P (2012) Models for the lithium abundances of multiple populations in globular clusters and the possible role of the big bang lithium. Mon Not R Astron Soc 426:1710–1719. https://doi.org/10.1111/j.1365-2966.2012.21663.x. arXiv:1207.1544
ADS
Article
Google Scholar
D’Antona F, Vesperini E, D’Ercole A, Ventura P, Milone AP, Marino AF, Tailo M (2016) A single model for the variety of multiple-population formation(s) in globular clusters: a temporal sequence. Mon Not R Astron Soc 458:2122–2139. https://doi.org/10.1093/mnras/stw387. arXiv:1602.05412
ADS
Article
Google Scholar
D’Antona F, Milone AP, Tailo M, Ventura P, Vesperini E, di Criscienzo M (2017) Stars caught in the braking stage in young Magellanic Cloud clusters. Nat Astron 1:0186. https://doi.org/10.1038/s41550-017-0186. arXiv:1707.07711
ADS
Article
Google Scholar
Davies MB, Piotto G, de Angeli F (2004) Blue straggler production in globular clusters. Mon Not R Astron Soc 349:129–134. https://doi.org/10.1111/j.1365-2966.2004.07474.x. arXiv:astro-ph/0401502
ADS
Article
Google Scholar
de Marchi F, de Angeli F, Piotto G, Carraro G, Davies MB (2006) Search and analysis of blue straggler stars in open clusters. Astron Astrophys 459:489–497. https://doi.org/10.1051/0004-6361:20064898. arXiv:astro-ph/0608464
ADS
Article
Google Scholar
de Mink SE, Pols OR, Langer N, Izzard RG (2009) Massive binaries as the source of abundance anomalies in globular clusters. Astron Astrophys 507:L1–L4. https://doi.org/10.1051/0004-6361/200913205. arXiv:0910.1086
ADS
Article
Google Scholar
de Silva GM, Gibson BK, Lattanzio J, Asplund M (2009) On and Na abundance patterns in open clusters of the Galactic disk. Astron Astrophys 500:L25–L28. https://doi.org/10.1051/0004-6361/200912279. arXiv:0905.4354
ADS
Article
Google Scholar
Decressin T, Meynet G, Charbonnel C, Prantzos N, Ekström S (2007) Fast rotating massive stars and the origin of the abundance patterns in galactic globular clusters. Astron Astrophys 464:1029–1044. https://doi.org/10.1051/0004-6361:20066013. arXiv:astro-ph/0611379
ADS
Article
Google Scholar
Denisenkov PA, Denisenkova SN (1989) Possible explanation of the correlation between nitrogen and sodium over abundances for red giants in globular clusters. Astron Tsirkulyar 1538:11
ADS
Google Scholar
D’Ercole A, Vesperini E, D’Antona F, McMillan SLW, Recchi S (2008) Formation and dynamical evolution of multiple stellar generations in globular clusters. Mon Not R Astron Soc 391(2):825–843. https://doi.org/10.1111/j.1365-2966.2008.13915.x. arXiv:0809.1438
ADS
Article
Google Scholar
D’Ercole A, Vesperini E, D’Antona F, McMillan SLW, Recchi S (2008) Formation and dynamical evolution of multiple stellar generations in globular clusters. Mon Not R Astron Soc 391:825–843. https://doi.org/10.1111/j.1365-2966.2008.13915.x. arXiv:0809.1438
ADS
Article
Google Scholar
D’Ercole A, D’Antona F, Ventura P, Vesperini E, McMillan SLW (2010) Abundance patterns of multiple populations in globular clusters: a chemical evolution model based on yields from AGB ejecta. Mon Not R Astron Soc 407(2):854–869. https://doi.org/10.1111/j.1365-2966.2010.16996.x. arXiv:1005.1892
ADS
Article
Google Scholar
D’Ercole A, D’Antona F, Vesperini E (2011) Formation of multiple populations in globular clusters: constraints on the dilution by pristine gas. Mon Not R Astron Soc 415:1304–1309. https://doi.org/10.1111/j.1365-2966.2011.18776.x. arXiv:1103.4715
ADS
Article
Google Scholar
D’Ercole A, D’Antona F, Carini R, Vesperini E, Ventura P (2012) The role of super-asymptotic giant branch ejecta in the abundance patterns of multiple populations in globular clusters. Mon Not R Astron Soc 423(2):1521–1533. https://doi.org/10.1111/j.1365-2966.2012.20974.x. arXiv:1203.4992
ADS
Article
Google Scholar
D’Ercole A, D’Antona F, Vesperini E (2016) Accretion of pristine gas and dilution during the formation of multiple-population globular clusters. Mon Not R Astron Soc 461:4088–4098. https://doi.org/10.1093/mnras/stw1583. arXiv:1607.00951
ADS
Article
Google Scholar
di Criscienzo M, D’Antona F, Ventura P (2010) A detailed study of the main sequence of the globular cluster NGC 6397: can we derive constraints on the existence of multiple populations? Astron Astrophys 511:A70. https://doi.org/10.1051/0004-6361/200912516. arXiv:0912.3150
Article
Google Scholar
Dias B, Barbuy B, Saviane I, Held EV, Da Costa GS, Ortolani S, Gullieuszik M, Vásquez S (2016) FORS2/VLT survey of Milky Way globular clusters. II. Fe and Mg abundances of 51 Milky Way globular clusters on a homogeneous scale. Astron Astrophys 590:A9. https://doi.org/10.1051/0004-6361/201526765. arXiv:1603.02672
Article
Google Scholar
Dobrovolskas V, Kučinskas A, Bonifacio P, Korotin SA, Steffen M, Sbordone L, Caffau E, Ludwig HG, Royer F, Prakapavičius D (2014) Abundances of lithium, oxygen, and sodium in the turn-off stars of Galactic globular cluster 47 Tucanae. Astron Astrophys 565:A121. https://doi.org/10.1051/0004-6361/201322868. arXiv:1311.1072
ADS
Article
Google Scholar
Doherty CL, Gil-Pons P, Lau HHB, Lattanzio JC, Siess L, Campbell SW (2014) Super and massive AGB stars—III. Nucleosynthesis in metal-poor and very metal-poor stars—Z = 0.001 and 0.0001. Mon Not R Astron Soc 441:582–598. https://doi.org/10.1093/mnras/stu571. arXiv:1403.5054
ADS
Article
Google Scholar
Donati P, Cantat Gaudin T, Bragaglia A, Friel E, Magrini L, Smiljanic R, Vallenari A, Tosi M, Sordo R, Tautvaisiene G, Blanco-Cuaresma S, Costado MT, Geisler D, Klutsch A, Mowlavi N, Muñoz C, San Roman I, Zaggia S, Gilmore G, Randich S, Bensby T, Flaccomio E, Koposov SE, Korn AJ, Pancino E, Recio-Blanco A, Franciosini E, de Laverny P, Lewis J, Morbidelli L, Prisinzano L, Sacco G, Worley CC, Hourihane A, Jofré P, Lardo C, Maiorca E (2014) The Gaia-ESO Survey: reevaluation of the parameters of the open cluster Trumpler 20 using photometry and spectroscopy. Astron Astrophys 561:A94. https://doi.org/10.1051/0004-6361/201322911. arXiv:1312.3925
Article
Google Scholar
D’Orazi V, Marino AF (2010) Lithium abundances in red giants of M4: evidence for asymptotic giant branch star pollution in globular clusters? Astrophys J Lett 716:L166–L169. https://doi.org/10.1088/2041-8205/716/2/L166. arXiv:1005.3376
ADS
Article
Google Scholar
D’Orazi V, Gratton R, Lucatello S, Carretta E, Bragaglia A, Marino AF (2010a) Ba stars and other binaries in first and second generation stars in globular clusters. Astrophys J Lett 719:L213–L217. https://doi.org/10.1088/2041-8205/719/2/L213. arXiv:1007.2164
ADS
Article
Google Scholar
D’Orazi V, Lucatello S, Gratton R, Bragaglia A, Carretta E, Shen Z, Zaggia S (2010b) Lithium and proton-capture elements in globular cluster dwarfs: the case of 47 TUC. Astrophys J Lett 713:L1–L5. https://doi.org/10.1088/2041-8205/713/1/L1. arXiv:1003.0013
ADS
Article
Google Scholar
D’Orazi V, Gratton RG, Pancino E, Bragaglia A, Carretta E, Lucatello S, Sneden C (2011) Chemical enrichment mechanisms in \(\omega \) Centauri: clues from neutron-capture elements. Astron Astrophys 534:A29. https://doi.org/10.1051/0004-6361/201117630. arXiv:1108.5216
ADS
Article
Google Scholar
D’Orazi V, Campbell SW, Lugaro M, Lattanzio JC, Pignatari M, Carretta E (2013) On the internal pollution mechanisms in the globular cluster NGC 6121 (M4): heavy-element abundances and AGB models. Mon Not R Astron Soc 433:366–381. https://doi.org/10.1093/mnras/stt728. arXiv:1304.7009
ADS
Article
Google Scholar
D’Orazi V, Angelou GC, Gratton RG, Lattanzio JC, Bragaglia A, Carretta E, Lucatello S, Momany Y (2014) Lithium abundances in globular cluster giants: NGC 6218 (M12) and NGC 5904 (M5). Astrophys J 791:39. https://doi.org/10.1088/0004-637X/791/1/39. arXiv:1406.5513
ADS
Article
Google Scholar
D’Orazi V, Gratton RG, Angelou GC, Bragaglia A, Carretta E, Lattanzio JC, Lucatello S, Momany Y, Sollima A, Beccari G (2015) Lithium abundances in globular cluster giants: NGC 1904, NGC 2808, and NGC 362. Mon Not R Astron Soc 449:4038–4047. https://doi.org/10.1093/mnras/stv612. arXiv:1503.05925
ADS
Article
Google Scholar
Dotter A, Sarajedini A, Anderson J, Aparicio A, Bedin LR, Chaboyer B, Majewski S, Marín-Franch A, Milone A, Paust N, Piotto G, Reid IN, Rosenberg A, Siegel M (2010) The ACS survey of galactic globular clusters. IX. Horizontal branch morphology and the second parameter phenomenon. Astrophys J 708:698–716. https://doi.org/10.1088/0004-637X/708/1/698. arXiv:0911.2469
ADS
Article
Google Scholar
Dotter A, Sarajedini A, Anderson J (2011) Globular clusters in the outer galactic halo: new Hubble Space Telescope/advanced camera for surveys imaging of six globular clusters and the galactic globular cluster age-metallicity relation. Astrophys J 738:74. https://doi.org/10.1088/0004-637X/738/1/74. arXiv:1106.4307
ADS
Article
Google Scholar
Dotter A, Milone AP, Conroy C, Marino AF, Sarajedini A (2018) Ruprecht 106: a riddle, wrapped in a mystery, inside an enigma. Astrophys J Lett 865:L10. https://doi.org/10.3847/2041-8213/aae08f. arXiv:1808.05582
ADS
Article
Google Scholar
Drukier GA (1996) Retention fractions for globular cluster neutron stars. Mon Not R Astron Soc 280:498–514. https://doi.org/10.1093/mnras/280.2.498. arXiv:astro-ph/9512163
ADS
Article
Google Scholar
Duchêne G, Lacour S, Moraux E, Goodwin S, Bouvier J (2018) Is stellar multiplicity universal? Tight stellar binaries in the Orion nebula Cluster. Mon Not R Astron Soc 478:1825–1836. https://doi.org/10.1093/mnras/sty1180. arXiv:1805.00965
ADS
Article
Google Scholar
Dupree AK, Avrett EH (2013) Direct evaluation of the helium abundances in Omega Centauri. Astrophys J Lett 773:L28. https://doi.org/10.1088/2041-8205/773/2/L28. arXiv:1307.5860
ADS
Article
Google Scholar
Dupree AK, Dotter A, Johnson CI, Marino AF, Milone AP, Bailey JI III, Crane JD, Mateo M, Olszewski EW (2017) NGC 1866: first spectroscopic detection of fast-rotating stars in a young LMC cluster. Astrophys J Lett 846:L1. https://doi.org/10.3847/2041-8213/aa85dd. arXiv:1708.03386
ADS
Article
Google Scholar
Elmegreen BG (2017) Globular cluster formation at high density: a model for elemental enrichment with fast recycling of massive-star debris. Astrophys J 836:80. https://doi.org/10.3847/1538-4357/836/1/80. arXiv:1701.01034
ADS
Article
Google Scholar
Feltzing S, Primas F, Johnson RA (2009) Stellar abundances and ages for metal-rich Milky Way globular clusters. Stellar parameters and elemental abundances for 9 HB stars in NGC 6352. Astron Astrophys 493:913–930. https://doi.org/10.1051/0004-6361:200810137. arXiv:0810.4832
ADS
Article
Google Scholar
Fernández-Trincado JG, Robin AC, Moreno E, Schiavon RP, García Pérez AE, Vieira K, Cunha K, Zamora O, Sneden C, Souto D, Carrera R, Johnson JA, Shetrone M, Zasowski G, García-Hernández DA, Majewski SR, Reylé C, Blanco-Cuaresma S, Martinez-Medina LA, Pérez-Villegas A, Valenzuela O, Pichardo B, Meza A, Mészáros S, Sobeck J, Geisler D, Anders F, Schultheis M, Tang B, Roman-Lopes A, Mennickent RE, Pan K, Nitschelm C, Allard F (2016) Discovery of a metal-poor field giant with a globular cluster second-generation abundance pattern. Astrophys J 833:132. https://doi.org/10.3847/1538-4357/833/2/132. arXiv:1604.01279
ADS
Article
Google Scholar
Fernández-Trincado JG, Zamora O, García-Hernández DA, Souto D, Dell’Agli F, Schiavon RP, Geisler D, Tang B, Villanova S, Hasselquist S, Mennickent RE, Cunha K, Shetrone M, Allende Prieto C, Vieira K, Zasowski G, Sobeck J, Hayes CR, Majewski SR, Placco VM, Beers TC, Schleicher DRG, Robin AC, Mészáros S, Masseron T, García Pérez AE, Anders F, Meza A, Alves-Brito A, Carrera R, Minniti D, Lane RR, Fernández-Alvar E, Moreno E, Pichardo B, Pérez-Villegas A, Schultheis M, Roman-Lopes A, Fuentes CE, Nitschelm C, Harding P, Bizyaev D, Pan K, Oravetz D, Simmons A, Ivans II, Blanco-Cuaresma S, Hernández J, Alonso-García J, Valenzuela O, Chanamé J (2017) Atypical Mg-poor Milky Way field stars with globular cluster second-generation-like chemical patterns. Astrophys J Lett 846:L2. https://doi.org/10.3847/2041-8213/aa8032. arXiv:1707.03108
ADS
Article
Google Scholar
Ferrarese L, Côté P, Dalla Bontà E, Peng EW, Merritt D, Jordán A, Blakeslee JP, Haşegan M, Mei S, Piatek S, Tonry JL, West MJ (2006) A fundamental relation between compact stellar nuclei, supermassive black holes, and their host galaxies. Astrophys J Lett 644:L21–L24. https://doi.org/10.1086/505388. arXiv:astro-ph/0603840
ADS
Article
Google Scholar
Ferraro FR, Mucciarelli A, Carretta E, Origlia L (2006a) On the iron content of NGC 1978 in the LMC: a metal-rich, chemically homogeneous cluster. Astrophys J Lett 645:L33–L36. https://doi.org/10.1086/506178. arXiv:astro-ph/0605646
ADS
Article
Google Scholar
Ferraro FR, Sabbi E, Gratton R, Piotto G, Lanzoni B, Carretta E, Rood RT, Sills A, Fusi Pecci F, Moehler S, Beccari G, Lucatello S, Compagni N (2006b) Discovery of carbon/oxygen-depleted blue straggler stars in 47 Tucanae: the chemical signature of a mass transfer formation process. Astrophys J Lett 647:L53–L56. https://doi.org/10.1086/507327. arXiv:astro-ph/0610081
ADS
Article
Google Scholar
Forbes DA, Bridges T (2010) Accreted versus in situ Milky Way globular clusters. Mon Not R Astron Soc 404:1203–1214. https://doi.org/10.1111/j.1365-2966.2010.16373.x. arXiv:1001.4289
ADS
Article
Google Scholar
Forbes DA, Lasky P, Graham AW, Spitler L (2008) Uniting old stellar systems: from globular clusters to giant ellipticals. Mon Not R Astron Soc 389:1924–1936. https://doi.org/10.1111/j.1365-2966.2008.13739.x. arXiv:0806.1090
ADS
Article
Google Scholar
Fregeau JM, Rasio FA (2007) Monte Carlo simulations of globular cluster evolution. IV. Direct integration of strong interactions. Astrophys J 658:1047–1061. https://doi.org/10.1086/511809. arXiv:astro-ph/0608261
ADS
Article
Google Scholar
Fregeau JM, Ivanova N, Rasio FA (2009) Evolution of the binary fraction in dense stellar systems. Astrophys J 707:1533–1540. https://doi.org/10.1088/0004-637X/707/2/1533. arXiv:0907.4196
ADS
Article
Google Scholar
Freiburghaus C, Rosswog S, Thielemann FK (1999) R-process in neutron star mergers. Astrophys J Lett 525:L121–L124. https://doi.org/10.1086/312343
ADS
Article
Google Scholar
Fu X, Bressan A, Molaro P, Marigo P (2015) Lithium evolution in metal-poor stars: from pre-main sequence to the Spite plateau. Mon Not R Astron Soc 452:3256–3265. https://doi.org/10.1093/mnras/stv1384. arXiv:1506.05993
ADS
Article
Google Scholar
Fusi Pecci F, Bellazzini M, Cacciari C, Ferraro FR (1995) The young globular clusters of the Milky Way and the local group galaxies: playing with great circles. Astron J 110:1664. https://doi.org/10.1086/117639. arXiv:astro-ph/9507065
ADS
Article
Google Scholar
Gaia Collaboration, Helmi A, van Leeuwen F, McMillan PJ, Massari D, Antoja T, Robin AC, Lindegren L, Bastian U, Arenou F, et al (2018) Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. Astron Astrophys 616:A12. https://doi.org/10.1051/0004-6361/201832698, arXiv:1804.09381
García-Hernández DA, Mészáros S, Monelli M, Cassisi S, Stetson PB, Zamora O, Shetrone M, Lucatello S (2015) Clear evidence for the presence of second-generation asymptotic giant branch stars in metal-poor galactic globular clusters. Astrophys J Lett 815:L4. https://doi.org/10.1088/2041-8205/815/1/L4. arXiv:1511.05714
ADS
Article
Google Scholar
Geisler D, Villanova S, Carraro G, Pilachowski C, Cummings J, Johnson CI, Bresolin F (2012) The unique Na: O abundance distribution in NGC 6791: the first open(?) Cluster with multiple populations. Astrophys J Lett 756:L40. https://doi.org/10.1088/2041-8205/756/2/L40. arXiv:1207.3328
ADS
Article
Google Scholar
Georgiev IY, Hilker M, Puzia TH, Goudfrooij P, Baumgardt H (2009) Globular cluster systems in nearby dwarf galaxies—II. Nuclear star clusters and their relation to massive Galactic globular clusters. Mon Not R Astron Soc 396:1075–1085. https://doi.org/10.1111/j.1365-2966.2009.14776.x. arXiv:0903.2857
ADS
Article
Google Scholar
Gieles M, Charbonnel C, Krause MGH, Hénault-Brunet V, Agertz O, Lamers HJGLM, Bastian N, Gualandris A, Zocchi A, Petts JA (2018) Concurrent formation of supermassive stars and globular clusters: implications for early self-enrichment. Mon Not R Astron Soc 478:2461–2479. https://doi.org/10.1093/mnras/sty1059. arXiv:1804.04682
ADS
Article
Google Scholar
Giersz M, Askar A, Wang L, Hypki A, Leveque A, Spurzem R (2019) MOCCA survey data base – I. Dissolution of tidally filling star clusters harbouring black hole subsystems. Mon Not R Astron Soc 487(2):2412–2423. https://doi.org/10.1093/mnras/stz1460. arXiv:1904.01227
ADS
Article
Google Scholar
Giesers B, Kamann S, Dreizler S, Husser TO, Askar A, Göttgens F, Brinchmann J, Latour M, Weilbacher PM, Wendt M, Roth MM (2019) A stellar census in globular clusters with MUSE: Binaries in NGC 3201, arXiv e-prints. arXiv:1909.04050,
Glatt K, Grebel EK, Sabbi E, Gallagher JS III, Nota A, Sirianni M, Clementini G, Tosi M, Harbeck D, Koch A, Kayser A, Da Costa G (2008) Age determination of six intermediate-age Small Magellanic Cloud star clusters with HST/ACS. Astron J 136:1703–1727. https://doi.org/10.1088/0004-6256/136/4/1703. arXiv:0807.3744
ADS
Article
Google Scholar
Glatt K, Grebel EK, Jordi K, Gallagher JS III, Da Costa G, Clementini G, Tosi M, Harbeck D, Nota A, Sabbi E, Sirianni M (2011) Present-day mass function of six Small Magellanic Cloud intermediate-age and old star clusters. Astron J 142:36. https://doi.org/10.1088/0004-6256/142/2/36
ADS
Article
Google Scholar
Goudfrooij P, Girardi L, Kozhurina-Platais V, Kalirai JS, Platais I, Puzia TH, Correnti M, Bressan A, Chandar R, Kerber L, Marigo P, Rubele S (2014) Extended main sequence turnoffs in intermediate-age star clusters: a correlation between turnoff width and early escape velocity. Astrophys J 797:35. https://doi.org/10.1088/0004-637X/797/1/35. arXiv:1410.3840
ADS
Article
Google Scholar
Gratton R, Sneden C, Carretta E (2004) Annu Rev Astron Astrophys 42:385–440. https://doi.org/10.1146/annurev.astro.42.053102.133945
ADS
Article
Google Scholar
Gratton RG, Carretta E (2010) Diluting the material forming the second generation stars in globular clusters: the contribution by unevolved stars. Astron Astrophys 521:A54. https://doi.org/10.1051/0004-6361/201014997. arXiv:1007.4894
ADS
Article
Google Scholar
Gratton RG, Sneden C, Carretta E, Bragaglia A (2000) Mixing along the red giant branch in metal-poor field stars. Astron Astrophys 354:169–187
ADS
Google Scholar
Gratton RG, Bonifacio P, Bragaglia A, Carretta E, Castellani V, Centurion M, Chieffi A, Claudi R, Clementini G, D’Antona F, Desidera S, François P, Grundahl F, Lucatello S, Molaro P, Pasquini L, Sneden C, Spite F, Straniero O (2001) The O–Na and Mg–Al anticorrelations in turn-off and early subgiants in globular clusters. Astron Astrophys 369:87–98. https://doi.org/10.1051/0004-6361:20010144. arXiv:astro-ph/0012457
ADS
Article
Google Scholar
Gratton RG, Lucatello S, Bragaglia A, Carretta E, Momany Y, Pancino E, Valenti E (2006) Na–O anticorrelation and HB. III. The abundances of NGC 6441 from FLAMES-UVES spectra. Astron Astrophys 455:271–281. https://doi.org/10.1051/0004-6361:20064957. arXiv:astro-ph/0603858
ADS
Article
Google Scholar
Gratton RG, Lucatello S, Bragaglia A, Carretta E, Cassisi S, Momany Y, Pancino E, Valenti E, Caloi V, Claudi R, D’Antona F, Desidera S, François P, James G, Moehler S, Ortolani S, Pasquini L, Piotto G, Recio-Blanco A (2007) Na–O anticorrelation and horizontal branches. V. The Na–O anticorrelation in NGC 6441 from Giraffe spectra. Astron Astrophys 464:953–965. https://doi.org/10.1051/0004-6361:20066061. arXiv:astro-ph/0701179
ADS
Article
Google Scholar
Gratton RG, Carretta E, Bragaglia A, Lucatello S, D’Orazi V (2010a) The second and third parameters of the horizontal branch in globular clusters. Astron Astrophys 517:A81. https://doi.org/10.1051/0004-6361/200912572. arXiv:1004.3862
ADS
Article
Google Scholar
Gratton RG, D’Orazi V, Bragaglia A, Carretta E, Lucatello S (2010b) The connection between missing AGB stars and extended horizontal branches. Astron Astrophys 522:A77. https://doi.org/10.1051/0004-6361/201015405. arXiv:1010.5913
ADS
Article
Google Scholar
Gratton RG, Johnson CI, Lucatello S, D’Orazi V, Pilachowski C (2011a) Multiple populations in \(\omega \) Centauri: a cluster analysis of spectroscopic data. Astron Astrophys 534:A72. https://doi.org/10.1051/0004-6361/201117093. arXiv:1105.5544
ADS
Article
Google Scholar
Gratton RG, Lucatello S, Carretta E, Bragaglia A, D’Orazi V, Momany YA (2011b) The Na–O anticorrelation in horizontal branch stars. I. NGC 2808. Astron Astrophys 534:A123. https://doi.org/10.1051/0004-6361/201117690. arXiv:1109.4013
ADS
Article
Google Scholar
Gratton RG, Carretta E, Bragaglia A (2012a) Multiple populations in globular clusters. Lessons learned from the Milky Way globular clusters. Astron Astrophys Rev 20:50. https://doi.org/10.1007/s00159-012-0050-3. arXiv:1201.6526
ADS
Article
Google Scholar
Gratton RG, Lucatello S, Carretta E, Bragaglia A, D’Orazi V, Al Momany Y, Sollima A, Salaris M, Cassisi S (2012b) The Na–O anticorrelation in horizontal branch stars. II. NGC 1851. Astron Astrophys 539:A19. https://doi.org/10.1051/0004-6361/201118491. arXiv:1201.1772
ADS
Article
Google Scholar
Gratton RG, Villanova S, Lucatello S, Sollima A, Geisler D, Carretta E, Cassisi S, Bragaglia A (2012c) Spectroscopic analysis of the two subgiant branches of the globular cluster NGC 1851. Astron Astrophys 544:A12. https://doi.org/10.1051/0004-6361/201219276. arXiv:1205.5719
ADS
Article
Google Scholar
Gratton RG, Lucatello S, Sollima A, Carretta E, Bragaglia A, Momany Y, D’Orazi V, Cassisi S, Pietrinferni A, Salaris M (2013) The Na–O anticorrelation in horizontal branch stars. III. 47 Tucanae and M 5. Astron Astrophys 549:A41. https://doi.org/10.1051/0004-6361/201219976. arXiv:1210.4069
ADS
Article
Google Scholar
Gratton RG, Lucatello S, Sollima A, Carretta E, Bragaglia A, Momany Y, D’Orazi V, Cassisi S, Salaris M (2014) The Na–O anticorrelation in horizontal branch stars. IV. M 22. Astron Astrophys 563:A13. https://doi.org/10.1051/0004-6361/201323101. arXiv:1401.7109
ADS
Article
Google Scholar
Gratton RG, Lucatello S, Sollima A, Carretta E, Bragaglia A, Momany Y, D’Orazi V, Salaris M, Cassisi S, Stetson PB (2015) The Na–O anticorrelation in horizontal branch stars. V. NGC 6723. Astron Astrophys 573:A92. https://doi.org/10.1051/0004-6361/201424393. arXiv:1410.8378
ADS
Article
Google Scholar
Grebel EK (2016) Globular Clusters in the Local Group. In: Meiron Y, Li S, Liu FK, Spurzem R (eds) Star clusters and black holes in galaxies across cosmic time, IAU Symposium, vol 312, pp 157–170. https://doi.org/10.1017/S1743921315008078
Article
Google Scholar
Greggio L, Renzini A (1990) Clues on the hot star content and the ultraviolet output of elliptical galaxies. Astrophys J 364:35–64. https://doi.org/10.1086/169384
ADS
Article
Google Scholar
Griffen BF, Drinkwater MJ, Thomas PA, Helly JC, Pimbblet KA (2010) Globular cluster formation within the Aquarius simulation. Mon Not R Astron Soc 405(1):375–386. https://doi.org/10.1111/j.1365-2966.2010.16458.x. arXiv:0910.0310
ADS
Article
Google Scholar
Grillmair CJ (2009) Four new stellar debris streams in the galactic halo. Astrophys J 693:1118–1127. https://doi.org/10.1088/0004-637X/693/2/1118. arXiv:0811.3965
ADS
Article
Google Scholar
Grillmair CJ, Dionatos O (2006) Detection of a 63\({^\circ }\) cold stellar stream in the Sloan Digital Sky Survey. Astrophys J Lett 643:L17–L20. https://doi.org/10.1086/505111. arXiv:astro-ph/0604332
ADS
Article
Google Scholar
Grundahl F, VandenBerg DA, Andersen MI (1998) Strömgren photometry of globular clusters: the distance and age of M13, evidence for two populations of horizontal-branch stars. Astrophys J Lett 500:L179–L182. https://doi.org/10.1086/311419. arXiv:astro-ph/9806081
ADS
Article
Google Scholar
Grundahl F, Catelan M, Landsman WB, Stetson PB, Andersen MI (1999) Hot horizontal-branch stars: the ubiquitous nature of the “Jump” in Strömgren u, low gravities, and the role of radiative levitation of metals. Astrophys J 524:242–261. https://doi.org/10.1086/307807. arXiv:astro-ph/9903120
ADS
Article
Google Scholar
Gruyters P, Nordlander T, Korn AJ (2014) Atomic diffusion and mixing in old stars. V. A deeper look into the globular cluster NGC 6752. Astron Astrophys 567:A72. https://doi.org/10.1051/0004-6361/201423590. arXiv:1405.6543
ADS
Article
Google Scholar
Gruyters P, Lind K, Richard O, Grundahl F, Asplund M, Casagrande L, Charbonnel C, Milone A, Primas F, Korn AJ (2016) Atomic diffusion and mixing in old stars. VI. The lithium content of M30. Astron Astrophys 589:A61. https://doi.org/10.1051/0004-6361/201527948. arXiv:1603.01565
ADS
Article
Google Scholar
Harbeck D, Smith GH, Grebel EK (2003) CN abundance variations on the main sequence of 47 Tucanae. Astron J 125:197–207. https://doi.org/10.1086/345570. arXiv:astro-ph/0210364
ADS
Article
Google Scholar
Harris WE (1996) A catalog of parameters for globular clusters in the Milky Way. Astron J 112:1487. https://doi.org/10.1086/118116
ADS
Article
Google Scholar
Hatzidimitriou D, Held EV, Tognelli E, Bragaglia A, Magrini L, Bravi L, Gazeas K, Dapergolas A, Drazdauskas A, Delgado-Mena E, Friel ED, Minkeviciute R, Sordo R, Tautvaisiene G, Gilmore G, Randich S, Feltzing S, Vallenari A, Alfaro EJ, Flaccomio E, Lanzafame AC, Pancino E, Smiljanic R, Bayo A, Bergemann M, Carraro G, Casey AR, Costado MT, Damiani F, Franciosini E, Gonneau A, Jofré P, Lewis J, Monaco L, Morbidelli L, Worley CC, Zaggia S (2019) The Gaia-ESO Survey: the inner disc, intermediate-age open cluster Pismis 18. Astron Astrophys 626:A90. https://doi.org/10.1051/0004-6361/201834636. arXiv:1906.09828
Article
Google Scholar
Haywood M, Di Matteo P, Lehnert MD, Snaith O, Khoperskov S, Gómez A (2018) In disguise or out of reach: first clues about in situ and accreted stars in the stellar halo of the Milky Way from Gaia DR2. Astrophys J 863:113. https://doi.org/10.3847/1538-4357/aad235. arXiv:1805.02617
ADS
Article
Google Scholar
Heggie D, Hut P (2003) The gravitational million-body problem: a multidisciplinary approach to star cluster dynamics. Cambridge University Press, Cambridge. https://doi.org/10.1017/CBO9781139164535
Book
MATH
Google Scholar
Heggie DC (1975) Binary evolution in stellar dynamics. Mon Not R Astron Soc 173:729–787. https://doi.org/10.1093/mnras/173.3.729
ADS
Article
Google Scholar
Helmi A, Babusiaux C, Koppelman HH, Massari D, Veljanoski J, Brown AGA (2018) The merger that led to the formation of the Milky Way’s inner stellar halo and thick disk. Nature 563:85–88. https://doi.org/10.1038/s41586-018-0625-x. arXiv:1806.06038
ADS
Article
Google Scholar
Hénault-Brunet V, Gieles M, Agertz O, Read JI (2015) Multiple populations in globular clusters: the distinct kinematic imprints of different formation scenarios. Mon Not R Astron Soc 450:1164–1198. https://doi.org/10.1093/mnras/stv675. arXiv:1503.07532
ADS
Article
Google Scholar
Hénon M (1970) Numerical exploration of the restricted problem. VI. Hill’s case: non-periodic orbits. Astron Astrophys 9:24–36
ADS
MATH
Google Scholar
Hénon M (1971) The Monte Carlo Method. Astrophys Space Sci 14:151–167. https://doi.org/10.1007/BF00649201
Herschel W (1814) Astronomical observations relating to the sidereal part of the heavens, and its connection with the nebulous part; arranged for the purpose of a critical examination. Philos Trans R Soc Lond Ser I 104:248–284
ADS
Article
Google Scholar
Hollyhead K, Bastian N, Adamo A, Silva-Villa E, Dale J, Ryon JE, Gazak Z (2015) Studying the YMC population of M83: how long clusters remain embedded, their interaction with the ISM and implications for GC formation theories. Mon Not R Astron Soc 449:1106–1117. https://doi.org/10.1093/mnras/stv331. arXiv:1502.03823
ADS
Article
Google Scholar
Hollyhead K, Kacharov N, Lardo C, Bastian N, Hilker M, Rejkuba M, Koch A, Grebel EK, Georgiev I (2017) Evidence for multiple populations in the intermediate-age cluster Lindsay 1 in the SMC. Mon Not R Astron Soc 465:L39–L43. https://doi.org/10.1093/mnrasl/slw179. arXiv:1609.01302
ADS
Article
Google Scholar
Hollyhead K, Lardo C, Kacharov N, Bastian N, Hilker M, Rejkuba M, Koch A, Grebel EK, Georgiev I (2018) Kron 3: a fourth intermediate age cluster in the SMC with evidence of multiple populations. Mon Not R Astron Soc 476:114–121. https://doi.org/10.1093/mnras/sty230. arXiv:1801.09670
ADS
Article
Google Scholar
Hollyhead K, Martocchia S, Lardo C, Bastian N, Kacharov N, Niederhofer F, Cabrera-Ziri I, Dalessandro E, Mucciarelli A, Salaris M, Usher C (2019) Spectroscopic detection of multiple populations in the 2 Gyr old cluster Hodge 6 in the LMC, arXiv e-prints. arXiv:1902.02297
Hong J, Vesperini E, Sollima A, McMillan SLW, D’Antona F, D’Ercole A (2015) Evolution of binary stars in multiple-population globular clusters. Mon Not R Astron Soc 449:629–638. https://doi.org/10.1093/mnras/stv306. arXiv:1503.02087
ADS
Article
Google Scholar
Hong J, Vesperini E, Sollima A, McMillan SLW, D’Antona F, D’Ercole A (2016) Evolution of binary stars in multiple-population globular clusters—II. Compact binaries. Mon Not R Astron Soc 457:4507–4514. https://doi.org/10.1093/mnras/stw262. arXiv:1604.01045
ADS
Article
Google Scholar
Hong J, Patel S, Vesperini E, Webb JJ, Dalessandro E (2019) Spatial mixing of binary stars in multiple-population globular clusters. Mon Not R Astron Soc 483:2592–2599. https://doi.org/10.1093/mnras/sty3308. arXiv:1812.01229
ADS
Article
Google Scholar
Hosek MW Jr, Lu JR, Anderson J, Najarro F, Ghez AM, Morris MR, Clarkson WI, Albers SM (2019) The unusual initial mass function of the arches cluster. Astrophys J 870:44. https://doi.org/10.3847/1538-4357/aaef90. arXiv:1808.02577
ADS
Article
Google Scholar
Huang Y, Chen B-Q, Zhang H-W, Yuan H-B, Xiang M-S, Wang C, Tian Z-J, Liu X-W (2019) Member Stars of the GD-1 Tidal Stream from the SDSS, LAMOST, and Gaia Surveys. Astrophys J 877:13. https://doi.org/10.3847/1538-4357/ab158a
ADS
Article
Google Scholar
Hurley JR, Aarseth SJ, Shara MM (2007) The core binary fractions of star clusters from realistic simulations. Astrophys J 665:707–718. https://doi.org/10.1086/517879. arXiv:0704.0290
ADS
Article
Google Scholar
Hut P, Bahcall JN (1983) Binary-single star scattering. I. Numerical experiments for equal masses. Astrophys J 268:319–341. https://doi.org/10.1086/160956
ADS
Article
Google Scholar
Ibata R, Bellazzini M, Malhan K, Martin N, Bianchini P (2019) Identification of the long stellar stream of the prototypical massive globular cluster \(\omega \) Centauri. Nat Astron 3:667–672. https://doi.org/10.1038/s41550-019-0751-x
ADS
Article
Google Scholar
Ibata RA, Gilmore G, Irwin MJ (1994) A dwarf satellite galaxy in Sagittarius. Nature 370:194–196. https://doi.org/10.1038/370194a0
ADS
Article
Google Scholar
Iben I, Rood RT, Strom KM, Strom SE (1969) Ratio of horizontal branch stars to red giant stars in globular clusters. Nature 224(5223):1006–1008. https://doi.org/10.1038/2241006a0
ADS
Article
Google Scholar
Iben I Jr (1964) Evolution through alpha-burning (\(M=3 \rightarrow 15 M_{\odot }\)). Astron J 69:545. https://doi.org/10.1086/109317
ADS
Article
Google Scholar
Iorio G, Belokurov V (2019) The shape of the Galactic halo with Gaia DR2 RR Lyrae. Anatomy of an ancient major merger. Mon Not R Astron Soc 482:3868–3879. https://doi.org/10.1093/mnras/sty2806. arXiv:1808.04370
ADS
Article
Google Scholar
Ivanova N, Belczynski K, Fregeau JM, Rasio FA (2005) The evolution of binary fractions in globular clusters. Mon Not R Astron Soc 358:572–584. https://doi.org/10.1111/j.1365-2966.2005.08804.x. arXiv:astro-ph/0501131
ADS
Article
Google Scholar
Ivans II, Sneden C, Kraft RP, Suntzeff NB, Smith VV, Langer GE, Fulbright JP (1999) Star-to-star abundance variations among bright giants in the mildly metal-poor globular cluster M4. Astron J 118:1273–1300. https://doi.org/10.1086/301017. arXiv:astro-ph/9905370
ADS
Article
Google Scholar
James G, François P, Bonifacio P, Carretta E, Gratton RG, Spite F (2004) Heavy elements and chemical enrichment in globular clusters. Astron Astrophys 427:825–838. https://doi.org/10.1051/0004-6361:20041512. arXiv:astro-ph/0408330
ADS
Article
Google Scholar
Jang S, Lee YW, Joo SJ, Na C (2014) Multiple populations in globular clusters and the origin of the Oosterhoff period groups. Mon Not R Astron Soc 443:L15–L19. https://doi.org/10.1093/mnrasl/slu064. arXiv:1404.7508
ADS
Article
Google Scholar
Johnson CI, Pilachowski CA (2010) Chemical abundances for 855 giants in the globular cluster Omega Centauri (NGC 5139). Astrophys J 722:1373–1410. https://doi.org/10.1088/0004-637X/722/2/1373. arXiv:1008.2232
ADS
Article
Google Scholar
Johnson CI, Rich RM, Pilachowski CA, Caldwell N, Mateo M, Bailey JI III, Crane JD (2015) A spectroscopic analysis of the galactic globular cluster NGC 6273 (M19). Astron J 150:63. https://doi.org/10.1088/0004-6256/150/2/63. arXiv:1507.00756
ADS
Article
Google Scholar
Johnson CI, Caldwell N, Rich RM, Pilachowski CA, Hsyu T (2016) The chemical composition of red giant branch stars in the galactic globular clusters NGC 6342 and NGC 6366. Astron J 152:21. https://doi.org/10.3847/0004-6256/152/1/21. arXiv:1606.08491
ADS
Article
Google Scholar
Johnson CI, Caldwell N, Rich RM, Mateo M, Bailey JI III, Clarkson WI, Olszewski EW, Walker MG (2017a) A chemical composition survey of the iron-complex globular cluster NGC 6273 (M19). Astrophys J 836:168. https://doi.org/10.3847/1538-4357/836/2/168. arXiv:1611.05830
ADS
Article
Google Scholar
Johnson CI, Caldwell N, Rich RM, Mateo M, Bailey JI III, Olszewski EW, Walker MG (2017b) Chemical complexity in the Eu-enhanced monometallic globular NGC 5986. Astrophys J 842:24. https://doi.org/10.3847/1538-4357/aa7414. arXiv:1705.10840
ADS
Article
Google Scholar
Johnson CI, Rich RM, Caldwell N, Mateo M, Bailey JI III, Olszewski EW, Walker MG (2018) Exploring the chemical composition and double horizontal branch of the bulge globular cluster NGC 6569. Astron J 155:71. https://doi.org/10.3847/1538-3881/aaa294. arXiv:1801.10475
ADS
Article
Google Scholar
Johnson CI, Caldwell N, Rich RM, Mateo M, Bailey JI (2019) Light element discontinuities suggest an early termination of star formation in the globular cluster NGC 6402 (M14). Mon Not R Astron Soc. https://doi.org/10.1093/mnras/stz587. arXiv:1903.01951
ADS
Article
Google Scholar
Johnson JA, Ivans II, Stetson PB (2006) Chemical compositions of red giant stars in old large magellanic cloud globular clusters. Astrophys J 640:801–822. https://doi.org/10.1086/498882. arXiv:astro-ph/0512132
ADS
Article
Google Scholar
Kacharov N, Koch A, McWilliam A (2013) A comprehensive chemical abundance study of the outer halo globular cluster M 75. Astron Astrophys 554:A81. https://doi.org/10.1051/0004-6361/201321392. arXiv:1304.4247
ADS
Article
Google Scholar
Käppeler F (1999) The origin of the heavy elements: the s process. Prog Part Nucl Phys 43:419–483. https://doi.org/10.1016/S0146-6410(99)00098-8
ADS
Article
Google Scholar
Karakas AI, Lattanzio JC (2003) Production of aluminium and the heavy magnesium isotopes in asymptotic giant branch stars. Publ Astron Soc Aust 20:279–293. https://doi.org/10.1071/AS03010
ADS
Article
Google Scholar
Karakas AI, Lattanzio JC (2014) The Dawes Review 2: nucleosynthesis and Stellar yields of low- and intermediate-mass single stars. Publ Astron Soc Aust 31:e030. https://doi.org/10.1017/pasa.2014.21. arXiv:1405.0062
ADS
Article
Google Scholar
Keenan DW, Innanen KA (1975) Numerical investigation of galactic tidal effects on spherical stellar systems. Astron J 80:290–302. https://doi.org/10.1086/111744
ADS
Article
Google Scholar
Kim HS, Cho J, Sharples RM, Vazdekis A, Beasley MA, Yoon SJ (2016) A new catalog of homogenized absorption line indices for Milky Way globular clusters from high-resolution integrated spectroscopy. Astrophys J Suppl 227:24. https://doi.org/10.3847/1538-4365/227/2/24. arXiv:1610.08061
ADS
Article
Google Scholar
King CR, Da Costa GS, Demarque P (1985) The luminosity function on the subgiant branch of 47 Tucanae A comparison of observation and theory. Astrophys J 299:674–682. https://doi.org/10.1086/163733
ADS
Article
Google Scholar
King IR (1966) The structure of star clusters. III. Some simple dynamical models. Astron J 71:64. https://doi.org/10.1086/109857
ADS
Article
Google Scholar
Koch A, McWilliam A (2014) The chemical composition of a regular halo globular cluster: NGC 5897. Astron Astrophys 565:A23. https://doi.org/10.1051/0004-6361/201323119. arXiv:1403.1262
ADS
Article
Google Scholar
Koch A, Grebel EK, Martell SL (2019) Purveyors of fine halos: re-assessing globular cluster contributions to the Milky Way halo buildup with SDSS-IV. Astron Astrophys 625:A75. https://doi.org/10.1051/0004-6361/201834825. arXiv:1904.02146
ADS
Article
Google Scholar
Koposov SE, Rix HW, Hogg DW (2010) Constraining the Milky Way potential with a six-dimensional phase-space map of the GD-1 stellar stream. Astrophys J 712:260–273. https://doi.org/10.1088/0004-637X/712/1/260. arXiv:0907.1085
ADS
Article
Google Scholar
Koposov SE, Belokurov V, Torrealba G (2017) Gaia 1 and 2. A pair of new Galactic star clusters. Mon Not R Astron Soc 470:2702–2709. https://doi.org/10.1093/mnras/stx1182. arXiv:1702.01122
ADS
Article
Google Scholar
Kraft RP (1979) On the nonhomogeneity of metal abundances in stars of globular clusters and satellite subsystems of the Galaxy. Annu Rev Astron Astrophys 17:309–343. https://doi.org/10.1146/annurev.aa.17.090179.001521
ADS
Article
Google Scholar
Kraft RP (1994) Abundance differences among globular-cluster giants: primordial versus evolutionary scenarios. Publ Astron Soc Pac 106:553–565. https://doi.org/10.1086/133416
ADS
Article
Google Scholar
Kraft RP, Sneden C, Langer GE, Prosser CF (1992) Oxygen abundances in halo giants. II. Giants in the globular clusters M13 and M3 and the intermediately metal-poor halo field. Astron J 104:645–668. https://doi.org/10.1086/116261
ADS
Article
Google Scholar
Kraft RP, Sneden C, Smith GH, Shetrone MD, Fulbright J (1998) Proton capture chains in globular cluster stars. III. Abundances of giants in the second-parameter globular cluster NGC 7006. Astron J 115:1500–1515. https://doi.org/10.1086/300279
ADS
Article
Google Scholar
Krause M, Charbonnel C, Decressin T, Meynet G, Prantzos N (2013) Superbubble dynamics in globular cluster infancy. II. Consequences for secondary star formation in the context of self-enrichment via fast-rotating massive stars. Astron Astrophys 552:A121. https://doi.org/10.1051/0004-6361/201220694. arXiv:1302.2494
ADS
Article
Google Scholar
Krause MGH, Charbonnel C, Bastian N, Diehl R (2016) Gas expulsion in massive star clusters? Constraints from observations of young and gas-free objects. Astron Astrophys 587:A53. https://doi.org/10.1051/0004-6361/201526685. arXiv:1512.04256
ADS
Article
Google Scholar
Kroupa P (2002) The initial mass function of stars: evidence for uniformity in variable systems. Science 295:82–91. https://doi.org/10.1126/science.1067524. arXiv:astro-ph/0201098
ADS
Article
Google Scholar
Kruijssen JMD (2014) Globular cluster formation in the context of galaxy formation and evolution. Class Quantum Gravity 31(24):244006. https://doi.org/10.1088/0264-9381/31/24/244006. arXiv:1407.2953
ADS
Article
MATH
Google Scholar
Kruijssen JMD (2015) Globular clusters as the relics of regular star formation in ‘normal’ high-redshift galaxies. Mon Not R Astron Soc 454:1658–1686. https://doi.org/10.1093/mnras/stv2026. arXiv:1509.02163
ADS
Article
Google Scholar
Kuzma PB, Da Costa GS, Mackey AD, Roderick TA (2016) The outer envelopes of globular clusters—I. NGC 7089 (M2). Mon Not R Astron Soc 461:3639–3652. https://doi.org/10.1093/mnras/stw1561. arXiv:1606.05949
ADS
Article
Google Scholar
Kuzma PB, Da Costa GS, Mackey AD (2018) The outer envelopes of globular clusters. II. NGC 1851, NGC 5824 and NGC 1261. Mon Not R Astron Soc 473:2881–2898. https://doi.org/10.1093/mnras/stx2353. arXiv:1709.02915
ADS
Article
Google Scholar
Lada CJ, Lada EA (2003) Annu Rev Astron Astrophys 41:57–115. https://doi.org/10.1146/annurev.astro.41.011802.094844. arXiv:astro-ph/0301540
ADS
Article
Google Scholar
Lagioia EP, Milone AP, Marino AF, Cassisi S, Aparicio AJ, Piotto G, Anderson J, Barbuy B, Bedin LR, Bellini A, Brown T, D’Antona F, Nardiello D, Ortolani S, Pietrinferni A, Renzini A, Salaris M, Sarajedini A, van der Marel R, Vesperini E (2018) The Hubble Space Telescope UV legacy survey of galactic globular clusters—XII. The RGB bumps of multiple stellar populations. Mon Not R Astron Soc 475:4088–4103. https://doi.org/10.1093/mnras/sty083. arXiv:1801.03395
ADS
Article
Google Scholar
Lamers HJGLM, Baumgardt H, Gieles M (2010) Mass-loss rates and the mass evolution of star clusters. Mon Not R Astron Soc 409:305–328. https://doi.org/10.1111/j.1365-2966.2010.17309.x. arXiv:1007.1078
ADS
Article
Google Scholar
Langer GE, Hoffman R, Sneden C (1993) Sodium–oxygen abundance anticorrelations and deep-mixing scenarios for globular-cluster giants. Publ Astron Soc Pac 105:301–307. https://doi.org/10.1086/133147
ADS
Article
Google Scholar
Lapenna E, Mucciarelli A, Ferraro FR, Origlia L, Lanzoni B, Massari D, Dalessandro E (2015) Chemical analysis of asymptotic giant branch stars in M62. Astrophys J 813:97. https://doi.org/10.1088/0004-637X/813/2/97. arXiv:1509.08917
ADS
Article
Google Scholar
Lapenna E, Lardo C, Mucciarelli A, Salaris M, Ferraro FR, Lanzoni B, Massari D, Stetson PB, Cassisi S, Savino A (2016) Lost and found: evidence of second-generation stars along the asymptotic giant branch of the globular cluster NGC 6752. Astrophys J Lett 826:L1. https://doi.org/10.3847/2041-8205/826/1/L1. arXiv:1606.09256
ADS
Article
Google Scholar
Lardo C, Bellazzini M, Pancino E, Carretta E, Bragaglia A, Dalessandro E (2011) Mining SDSS in search of multiple populations in globular clusters. Astron Astrophys 525:A114. https://doi.org/10.1051/0004-6361/201015662. arXiv:1010.4697
ADS
Article
Google Scholar
Lardo C, Milone AP, Marino AF, Mucciarelli A, Pancino E, Zoccali M, Rejkuba M, Carrera R, Gonzalez O (2012) C and N abundances of main sequence and subgiant branch stars in NGC 1851. Astron Astrophys 541:A141. https://doi.org/10.1051/0004-6361/201118763. arXiv:1202.6176
ADS
Article
Google Scholar
Lardo C, Davies B, Kudritzki RP, Gazak JZ, Evans CJ, Patrick LR, Bergemann M, Plez B (2015) Red supergiants as cosmic abundance probes: the first direct metallicity determination of NGC 4038 in the antennae. Astrophys J 812:160. https://doi.org/10.1088/0004-637X/812/2/160. arXiv:1509.04937
ADS
Article
Google Scholar
Lardo C, Mucciarelli A, Bastian N (2016) The iron dispersion of the globular cluster M2, revised. Mon Not R Astron Soc 457:51–63. https://doi.org/10.1093/mnras/stv2802. arXiv:1512.00691
ADS
Article
Google Scholar
Lardo C, Cabrera-Ziri I, Davies B, Bastian N (2017a) Searching for globular cluster-like abundance patterns in young massive clusters—II. Results from the Antennae galaxies. Mon Not R Astron Soc 468:2482–2488. https://doi.org/10.1093/mnras/stx628. arXiv:1703.04591
ADS
Article
Google Scholar
Lardo C, Salaris M, Savino A, Donati P, Stetson PB, Cassisi S (2017b) Multiple populations along the asymptotic giant branch of the globular cluster M4. Mon Not R Astron Soc 466:3507–3512. https://doi.org/10.1093/mnras/stw3374. arXiv:1612.08929
ADS
Article
Google Scholar
Larsen SS, Brodie JP, Grundahl F, Strader J (2014) Nitrogen abundances and multiple stellar populations in the globular clusters of the Fornax dSph. Astrophys J 797:15. https://doi.org/10.1088/0004-637X/797/1/15. arXiv:1409.0541
ADS
Article
Google Scholar
Larsen SS, Baumgardt H, Bastian N, Brodie JP, Grundahl F, Strader J (2015) Radial distributions of sub-populations in the globular cluster M15: a more centrally concentrated primordial population. Astrophys J 804:71. https://doi.org/10.1088/0004-637X/804/1/71. arXiv:1503.00726
ADS
Article
Google Scholar
Larsen SS, Baumgardt H, Bastian N, Hernandez S (2019) Brodie JP (2019) Hubble Space Telescope photometry of multiple stellar populations in the inner parts of NGC 2419. Astron Astrophys 624:A25. https://doi.org/10.1051/0004-6361/201834494. arXiv:1902.01416
ADS
Article
Google Scholar
Lattanzio J, Forestini M, Charbonnel C (2000) Nucleosynthesis in intermediate mass AGB stars. Mem Soc Astron Ital 71:737–744 arXiv:astro-ph/9912298
ADS
Google Scholar
Lee JW (2015) Multiple stellar populations of globular clusters from homogeneous Ca by photometry. I. M22 (NGC 6656). Astrophys J Suppl 219:7. https://doi.org/10.1088/0067-0049/219/1/7. arXiv:1506.00116
ADS
Article
Google Scholar
Lee JW (2017) Multiple stellar populations of globular clusters from homogeneous Ca–CN photometry. II. M5 (NGC 5904) and a new filter system. Astrophys J 844:77. https://doi.org/10.3847/1538-4357/aa7b8c. arXiv:1706.07969
ADS
Article
Google Scholar
Lee JW (2018) Multiple stellar populations of globular clusters from homogeneous Ca–CN photometry. III. NGC 6752. Astrophys J Suppl 238:24. https://doi.org/10.3847/1538-4365/aadcad. arXiv:1901.10107
ADS
Article
Google Scholar
Lee JW (2019) Multiple stellar populations of globular clusters from homogeneous Ca–CN photometry. IV. Toward precision populational tagging, arXiv e-prints. arXiv:1901.09584
Lee JW, Kang YW, Lee J, Lee YW (2009a) Enrichment by supernovae in globular clusters with multiple populations. Nature 462:480–482. https://doi.org/10.1038/nature08565. arXiv:0911.4798
ADS
Article
Google Scholar
Lee JW, Lee J, Kang YW, Lee YW, Han SI, Joo SJ, Rey SC, Yong D (2009b) Chemical inhomogeneity in red giant branch stars and RR lyrae variables in NGC 1851: two subpopulations in red giant branch. Astrophys J Lett 695:L78–L82. https://doi.org/10.1088/0004-637X/695/1/L78
ADS
Article
Google Scholar
Leigh N, Giersz M, Webb JJ, Hypki A, De Marchi G, Kroupa P, Sills A (2013) The state of globular clusters at birth: emergence from the gas-embedded phase. Mon Not R Astron Soc 436:3399–3412. https://doi.org/10.1093/mnras/stt1825. arXiv:1309.7054
ADS
Article
Google Scholar
Letarte B, Hill V, Jablonka P, Tolstoy E, François P, Meylan G (2006) VLT/UVES spectroscopy of individual stars in three globular clusters in the Fornax dwarf spheroidal galaxy. Astron Astrophys 453:547–554. https://doi.org/10.1051/0004-6361:20054439. arXiv:astro-ph/0603315
ADS
Article
Google Scholar
Li H, Gnedin OY (2019) Star cluster formation in cosmological simulations—III. Dynamical and chemical evolution. Mon Not R Astron Soc 486(3):4030–4043. https://doi.org/10.1093/mnras/stz1114. arXiv:1810.11036
ADS
Article
Google Scholar
Libralato M, Bellini A, van der Marel RP, Anderson J, Watkins LL, Piotto G, Ferraro FR, Nardiello D, Vesperini E (2018) Hubble Space Telescope proper motion (HSTPROMO) catalogs of galactic globular cluster. VI. Improved data reduction and internal-kinematic analysis of NGC 362. Astrophys J 861:99. https://doi.org/10.3847/1538-4357/aac6c0. arXiv:1805.05332
ADS
Article
Google Scholar
Lim B, Rauw G, Nazé Y, Sung H, Hwang N, Park BG (2019) Extended main sequence turn-off originating from a broad range of stellar rotational velocities. Nat Astron 3:76–81. https://doi.org/10.1038/s41550-018-0619-5. arXiv:1811.01593
ADS
Article
Google Scholar
Lim D, Han SI, Lee YW, Roh DG, Sohn YJ, Chun SH, Lee JW, Johnson CI (2015) Low-resolution spectroscopy for the globular clusters with signs of supernova enrichment: M22, NGC 1851, and NGC 288. Astrophys J Suppl 216:19. https://doi.org/10.1088/0067-0049/216/1/19. arXiv:1412.1832
ADS
Article
Google Scholar
Lin DNC, Richer HB (1992) Young globular clusters in the Milky Way Galaxy. Astrophys J Lett 388:L57–L60. https://doi.org/10.1086/186329
ADS
Article
Google Scholar
Lind K, Primas F, Charbonnel C, Grundahl F, Asplund M (2009) Signatures of intrinsic Li depletion and Li–Na anti-correlation in the metal-poor globular cluster NGC 6397. Astron Astrophys 503:545–557. https://doi.org/10.1051/0004-6361/200912524. arXiv:0906.2876
ADS
Article
Google Scholar
Lind K, Koposov SE, Battistini C, Marino AF, Ruchti G, Serenelli A, Worley CC, Alves-Brito A, Asplund M, Barklem PS, Bensby T, Bergemann M, Blanco-Cuaresma S, Bragaglia A, Edvardsson B, Feltzing S, Gruyters P, Heiter U, Jofre P, Korn AJ, Nordlander T, Ryde N, Soubiran C, Gilmore G, Randich S, Ferguson AMN, Jeffries RD, Vallenari A, Allende Prieto C, Pancino E, Recio-Blanco A, Romano D, Smiljanic R, Bellazzini M, Damiani F, Hill V, de Laverny P, Jackson RJ, Lardo C, Zaggia S (2015) The Gaia-ESO Survey: a globular cluster escapee in the Galactic halo. Astron Astrophys 575:L12. https://doi.org/10.1051/0004-6361/201425554. arXiv:1502.03934
ADS
Article
Google Scholar
Lindblad B (1922) Spectrophotometric methods for determining stellar luminosity. Astrophys J 55. https://doi.org/10.1086/142660
ADS
Article
Google Scholar
Lombardi JC Jr, Rasio FA, Shapiro SL (1995) On blue straggler formation by direct collisions of main sequence stars. Astrophys J Lett 445:L117–L120. https://doi.org/10.1086/187903. arXiv:astro-ph/9502106
ADS
Article
Google Scholar
Longmore SN (2015) Heart of darkness: dust obscuration of the central stellar component in globular clusters younger than \(\sim \)100 Myr in multiple stellar population models. Mon Not R Astron Soc 448:L62–L66. https://doi.org/10.1093/mnrasl/slu203. arXiv:1501.01216
ADS
Article
Google Scholar
Lucatello S, Sollima A, Gratton R, Vesperini E, D’Orazi V, Carretta E, Bragaglia A (2015) The incidence of binaries in globular cluster stellar populations. Astron Astrophys 584:A52. https://doi.org/10.1051/0004-6361/201526957. arXiv:1509.05014
ADS
Article
Google Scholar
Luck RE, Bond HE (1991) Subgiant CH stars. II. Chemical compositions and the evolutionary connection with barium stars. Astrophys J Suppl 77:515–540. https://doi.org/10.1086/191615
ADS
Article
Google Scholar
Lynden-Bell D (1967) Statistical mechanics of violent relaxation in stellar systems. Mon Not R Astron Soc 136:101. https://doi.org/10.1093/mnras/136.1.101
ADS
Article
Google Scholar
Lynden-Bell D, Wood R (1968) The gravo-thermal catastrophe in isothermal spheres and the onset of red-giant structure for stellar systems. Mon Not R Astron Soc 138:495. https://doi.org/10.1093/mnras/138.4.495
ADS
Article
Google Scholar
Mackereth JT, Schiavon RP, Pfeffer J, Hayes CR, Bovy J, Anguiano B, Allende Prieto C, Hasselquist S, Holtzman J, Johnson JA, Majewski SR, O’Connell R, Shetrone M, Tissera PB, Fernández-Trincado JG (2019) The origin of accreted stellar halo populations in the Milky Way using APOGEE, Gaia, and the EAGLE simulations. Mon Not R Astron Soc 482:3426–3442. https://doi.org/10.1093/mnras/sty2955. arXiv:1808.00968
ADS
Article
Google Scholar
Mackey AD, Gilmore GF (2003) Surface brightness profiles and structural parameters for 53 rich stellar clusters in the Large Magellanic Cloud. Mon Not R Astron Soc 338:85–119. https://doi.org/10.1046/j.1365-8711.2003.06021.x. arXiv:astro-ph/0209031
ADS
Article
Google Scholar
Mackey AD, Gilmore GF (2003) Surface brightness profiles and structural parameters for globular clusters in the Fornax and Sagittarius dwarf spheroidal galaxies. Mon Not R Astron Soc 340:175–190. https://doi.org/10.1046/j.1365-8711.2003.06275.x. arXiv:astro-ph/0211396
ADS
Article
Google Scholar
MacLean BT, De Silva GM, Lattanzio J (2015) O, Na, Ba and Eu abundance patterns in open clusters. Mon Not R Astron Soc 446:3556–3561. https://doi.org/10.1093/mnras/stu2348. arXiv:1411.1185
ADS
Article
Google Scholar
MacLean BT, Campbell SW, De Silva GM, Lattanzio J, D’Orazi V, Simpson JD, Momany Y (2016) An extreme paucity of second population AGB stars in the ‘normal’ globular cluster M4. Mon Not R Astron Soc 460(1):L69–L73. https://doi.org/10.1093/mnrasl/slw073. arXiv:1604.05040
ADS
Article
Google Scholar
MacLean BT, Campbell SW, Amarsi AM, Nordlander T, Cottrell PL, De Silva GM, Lattanzio J, Constantino T, D’Orazi V, Casagrande L (2018a) On the AGB stars of M 4: a robust disagreement between spectroscopic observations and theory. Mon Not R Astron Soc 481:373–395. https://doi.org/10.1093/mnras/sty2297. arXiv:1808.06735
ADS
Article
Google Scholar
MacLean BT, Campbell SW, De Silva GM, Lattanzio J, D’Orazi V, Cottrell PL, Momany Y, Casagrande L (2018b) AGB subpopulations in the nearby globular cluster NGC 6397. Mon Not R Astron Soc 475:257–265. https://doi.org/10.1093/mnras/stx3217. arXiv:1712.03340
ADS
Article
Google Scholar
Magrini L, Randich S, Donati P, Bragaglia A, Adibekyan V, Romano D, Smiljanic R, Blanco-Cuaresma S, Tautvaisiene G, Friel E, Overbeek J, Jacobson H, Cantat-Gaudin T, Vallenari A, Sordo R, Pancino E, Geisler D, San Roman I, Villanova S, Casey A, Hourihane A, Worley CC, Francois P, Gilmore G, Bensby T, Flaccomio E, Korn AJ, Recio-Blanco A, Carraro G, Costado MT, Franciosini E, Heiter U, Jofré P, Lardo C, de Laverny P, Monaco L, Morbidelli L, Sacco G, Sousa SG, Zaggia S (2015) The Gaia-ESO Survey: insights into the inner-disc evolution from open clusters. Astron Astrophys 580:A85. https://doi.org/10.1051/0004-6361/201526305. arXiv:1505.04039
Article
Google Scholar
Majewski SR, Schiavon RP, Frinchaboy PM, Allende Prieto C, Barkhouser R, Bizyaev D, Blank B, Brunner S, Burton A, Carrera R, Chojnowski SD, Cunha K, Epstein C, Fitzgerald G, García Pérez AE, Hearty FR, Henderson C, Holtzman JA, Johnson JA, Lam CR, Lawler JE, Maseman P, Mészáros S, Nelson M, Nguyen DC, Nidever DL, Pinsonneault M, Shetrone M, Smee S, Smith VV, Stolberg T, Skrutskie MF, Walker E, Wilson JC, Zasowski G, Anders F, Basu S, Beland S, Blanton MR, Bovy J, Brownstein JR, Carlberg J, Chaplin W, Chiappini C, Eisenstein DJ, Elsworth Y, Feuillet D, Fleming SW, Galbraith-Frew J, García RA, García-Hernández DA, Gillespie BA, Girardi L, Gunn JE, Hasselquist S, Hayden MR, Hekker S, Ivans I, Kinemuchi K, Klaene M, Mahadevan S, Mathur S, Mosser B, Muna D, Munn JA, Nichol RC, O’Connell RW, Parejko JK, Robin AC, Rocha-Pinto H, Schultheis M, Serenelli AM, Shane N, Silva Aguirre V, Sobeck JS, Thompson B, Troup NW, Weinberg DH, Zamora O (2017) The Apache Point Observatory Galactic Evolution Experiment (APOGEE). Astron J 154:94. https://doi.org/10.3847/1538-3881/aa784d. arXiv:1509.05420
ADS
Article
Google Scholar
Mapelli M (2017) Rotation in young massive star clusters. Mon Not R Astron Soc 467:3255–3267. https://doi.org/10.1093/mnras/stx304. arXiv:1702.00415
ADS
Article
Google Scholar
Marín-Franch A, Aparicio A, Piotto G, Rosenberg A, Chaboyer B, Sarajedini A, Siegel M, Anderson J, Bedin LR, Dotter A, Hempel M, King I, Majewski S, Milone AP, Paust N, Reid IN (2009) The ACS survey of galactic globular clusters. VII. Relative ages. Astrophys J 694:1498–1516. https://doi.org/10.1088/0004-637X/694/2/1498. arXiv:0812.4541
ADS
Article
Google Scholar
Marino AF, Milone AP, Piotto G, Villanova S, Bedin LR, Bellini A, Renzini A (2009) A double stellar generation in the globular cluster NGC 6656 (M 22). Two stellar groups with different iron and s-process element abundances. Astron Astrophys 505:1099–1113. https://doi.org/10.1051/0004-6361/200911827. arXiv:0905.4058
ADS
Article
Google Scholar
Marino AF, Milone AP, Piotto G, Villanova S, Gratton R, D’Antona F, Anderson J, Bedin LR, Bellini A, Cassisi S, Geisler D, Renzini A, Zoccali M (2011a) Sodium–oxygen anticorrelation and neutron-capture elements in omega centauri stellar populations. Astrophys J 731:64. https://doi.org/10.1088/0004-637X/731/1/64. arXiv:1102.1653
ADS
Article
Google Scholar
Marino AF, Sneden C, Kraft RP, Wallerstein G, Norris JE, Da Costa G, Milone AP, Ivans II, Gonzalez G, Fulbright JP, Hilker M, Piotto G, Zoccali M, Stetson PB (2011b) The two metallicity groups of the globular cluster M 22: a chemical perspective. Astron Astrophys 532:A8. https://doi.org/10.1051/0004-6361/201116546. arXiv:1105.1523
Article
Google Scholar
Marino AF, Villanova S, Milone AP, Piotto G, Lind K, Geisler D, Stetson PB (2011c) Sodium–oxygen anticorrelation among horizontal branch stars in the globular cluster M4. Astrophys J Lett 730:L16. https://doi.org/10.1088/2041-8205/730/2/L16. arXiv:1012.4931
ADS
Article
Google Scholar
Marino AF, Milone AP, Sneden C, Bergemann M, Kraft RP, Wallerstein G, Cassisi S, Aparicio A, Asplund M, Bedin RL, Hilker M, Lind K, Momany Y, Piotto G, Roederer IU, Stetson PB, Zoccali M (2012) The double sub-giant branch of NGC 6656 (M 22): a chemical characterization. Astron Astrophys 541:A15. https://doi.org/10.1051/0004-6361/201118381. arXiv:1202.2825
ADS
Article
Google Scholar
Marino AF, Milone AP, Przybilla N, Bergemann M, Lind K, Asplund M, Cassisi S, Catelan M, Casagrande L, Valcarce AAR, Bedin LR, Cortés C, D’Antona F, Jerjen H, Piotto G, Schlesinger K, Zoccali M, Angeloni R (2014) Helium enhanced stars and multiple populations along the horizontal branch of NGC 2808: direct spectroscopic measurements. Mon Not R Astron Soc 437:1609–1627. https://doi.org/10.1093/mnras/stt1993. arXiv:1310.4527
ADS
Article
Google Scholar
Marino AF, Milone AP, Karakas AI, Casagrande L, Yong D, Shingles L, Da Costa G, Norris JE, Stetson PB, Lind K, Asplund M, Collet R, Jerjen H, Sbordone L, Aparicio A, Cassisi S (2015) Iron and s-elements abundance variations in NGC 5286: comparison with ‘anomalous’ globular clusters and Milky Way satellites. Mon Not R Astron Soc 450:815–845. https://doi.org/10.1093/mnras/stv420. arXiv:1502.07438
ADS
Article
Google Scholar
Marino AF, Milone AP, Yong D, Da Costa G, Asplund M, Bedin LR, Jerjen H, Nardiello D, Piotto G, Renzini A, Shetrone M (2017) Spectroscopy and Photometry of Multiple Populations along the Asymptotic Giant Branch of NGC 2808 and NGC 6121 (M4). Astrophys J 843:66. https://doi.org/10.3847/1538-4357/aa7852
ADS
Article
Google Scholar
Marino AF, Milone AP, Casagrande L, Przybilla N, Balaguer-Núñez L, Di Criscienzo M, Serenelli A, Vilardell F (2018a) Discovery of extended main sequence turnoffs in galactic open clusters. Astrophys J Lett 863:L33. https://doi.org/10.3847/2041-8213/aad868. arXiv:1807.05888
ADS
Article
Google Scholar
Marino AF, Yong D, Milone AP, Piotto G, Lundquist M, Bedin LR, Chené AN, Da Costa G, Asplund M, Jerjen H (2018b) Metallicity variations in the type II globular cluster NGC 6934. Astrophys J 859:81. https://doi.org/10.3847/1538-4357/aabdea. arXiv:1804.04158
ADS
Article
Google Scholar
Marino AF, Milone AP, Renzini A, D’Antona F, Anderson J, Bedin LR, Bellini A, Cordoni G, Lagioia EP, Piotto G, Tailo M (2019) The Hubble Space Telescope UV legacy survey of galactic globular clusters. XIX. A chemical tagging of the multiple stellar populations over the chromosome maps. Mon Not R Astron Soc 487:3815–3844. https://doi.org/10.1093/mnras/stz1415. arXiv:1904.05180
ADS
Article
Google Scholar
Martell SL, Grebel EK (2010) Light-element abundance variations in the Milky Way halo. Astron Astrophys 519:A14. https://doi.org/10.1051/0004-6361/201014135. arXiv:1005.4070
ADS
Article
Google Scholar
Martell SL, Smith GH, Briley MM (2008) Deep mixing and metallicity: carbon depletion in globular cluster giants. Astron J 136:2522–2532. https://doi.org/10.1088/0004-6256/136/6/2522. arXiv:0809.4470
ADS
Article
Google Scholar
Martell SL, Smolinski JP, Beers TC, Grebel EK (2011) Building the Galactic halo from globular clusters: evidence from chemically unusual red giants. Astron Astrophys 534:A136. https://doi.org/10.1051/0004-6361/201117644. arXiv:1109.3916
ADS
Article
Google Scholar
Martell SL, Shetrone MD, Lucatello S, Schiavon RP, Mészáros S, Allende Prieto C, García-Hernández DA, Beers TC, Nidever DL (2016) Chemical tagging in the SDSS-III/APOGEE survey: new identifications of halo stars with globular cluster origins. Astrophys J 825:146. https://doi.org/10.3847/0004-637X/825/2/146. arXiv:1605.05792
ADS
Article
Google Scholar
Martocchia S, Bastian N, Usher C, Kozhurina-Platais V, Niederhofer F, Cabrera-Ziri I, Dalessandro E, Hollyhead K, Kacharov N, Lardo C, Larsen S, Mucciarelli A, Platais I, Salaris M, Cordero M, Geisler D, Hilker M, Li C, Mackey D (2017) The search for multiple populations in Magellanic Cloud Clusters—III. No evidence for multiple populations in the SMC cluster NGC 419. Mon Not R Astron Soc 468:3150–3158. https://doi.org/10.1093/mnras/stx660. arXiv:1703.04631
ADS
Article
Google Scholar
Martocchia S, Cabrera-Ziri I, Lardo C, Dalessandro E, Bastian N, Kozhurina-Platais V, Usher C, Niederhofer F, Cordero M, Geisler D, Hollyhead K, Kacharov N, Larsen S, Li C, Mackey D, Hilker M, Mucciarelli A, Platais I, Salaris M (2018a) Age as a major factor in the onset of multiple populations in stellar clusters. Mon Not R Astron Soc 473:2688–2700. https://doi.org/10.1093/mnras/stx2556. arXiv:1710.00831
ADS
Article
Google Scholar
Martocchia S, Niederhofer F, Dalessandro E, Bastian N, Kacharov N, Usher C, Cabrera-Ziri I, Lardo C, Cassisi S, Geisler D, Hilker M, Hollyhead K, Kozhurina-Platais V, Larsen S, Mackey D, Mucciarelli A, Platais I, Salaris M (2018b) The search for multiple populations in magellanic cloud clusters—IV. Coeval multiple stellar populations in the young star cluster NGC 1978. Mon Not R Astron Soc 477:4696–4705. https://doi.org/10.1093/mnras/sty916. arXiv:1804.04141
ADS
Article
Google Scholar
Massari D, Mucciarelli A, Dalessandro E, Bellazzini M, Cassisi S, Fiorentino G, Ibata RA, Lardo C, Salaris M (2017) The chemical composition of the low-mass Galactic globular cluster NGC 6362. Mon Not R Astron Soc 468:1249–1258. https://doi.org/10.1093/mnras/stx549. arXiv:1703.00385
ADS
Article
Google Scholar
Masseron T, García-Hernández DA, Mészáros S, Zamora O, Dell’Agli F, Allende Prieto C, Edvardsson B, Shetrone M, Plez B, Fernández-Trincado JG, Cunha K, Jönsson H, Geisler D, Beers TC, Cohen RE (2019) Homogeneous analysis of globular clusters from the APOGEE survey with the BACCHUS code. I. The northern clusters. Astron Astrophys 622:A191. https://doi.org/10.1051/0004-6361/201834550. arXiv:1812.08817
ADS
Article
Google Scholar
Mastrobuono-Battisti A, Perets HB (2013) Evolution of second-generation stars in stellar disks of globular and nuclear clusters: \(\omega \) Centauri as a test case. Astrophys J 779:85. https://doi.org/10.1088/0004-637X/779/1/85. arXiv:1304.6086
ADS
Article
Google Scholar
Mateluna R, Geisler D, Villanova S, Carraro G, Grocholski A, Sarajedini A, Cole A, Smith V (2012) Chemical abundances in the old LMC globular cluster Hodge 11. Astron Astrophys 548:A82. https://doi.org/10.1051/0004-6361/201219750
ADS
Article
Google Scholar
McClure RD, Fletcher JM, Nemec JM (1980) The binary nature of the barium stars. Astrophys J Lett 238:L35–L38. https://doi.org/10.1086/183252
ADS
Article
Google Scholar
McConnachie AW (2012) The observed properties of dwarf galaxies in and around the local group. Astron J 144:4. https://doi.org/10.1088/0004-6256/144/1/4. arXiv:1204.1562
ADS
Article
Google Scholar
McCrea WH (1964) Extended main-sequence of some stellar clusters. Mon Not R Astron Soc 128:147. https://doi.org/10.1093/mnras/128.2.147
ADS
Article
Google Scholar
McLaughlin DE, Fall SM (2008) Shaping the globular cluster mass function by stellar-dynamical evaporation. Astrophys J 679:1272–1287. https://doi.org/10.1086/533485. arXiv:0704.0080
ADS
Article
Google Scholar
McLaughlin DE, van der Marel RP (2005) Resolved massive star clusters in the milky way and its satellites: brightness profiles and a catalog of fundamental parameters. Astrophys J Suppl 161:304–360. https://doi.org/10.1086/497429. arXiv:astro-ph/0605132
ADS
Article
Google Scholar
McMillan SLW, Vesperini E, Portegies Zwart SF (2007) A dynamical origin for early mass segregation in young star clusters. Astrophys J Lett 655:L45–L49. https://doi.org/10.1086/511763. arXiv:astro-ph/0609515
ADS
Article
Google Scholar
McSaveney JA, Wood PR, Scholz M, Lattanzio JC, Hinkle KH (2007) Abundances in intermediate-mass AGB stars undergoing third dredge-up and hot-bottom burning. Mon Not R Astron Soc 378:1089–1100. https://doi.org/10.1111/j.1365-2966.2007.11845.x. arXiv:0704.1907
ADS
Article
Google Scholar
Meléndez J, Asplund M, Gustafsson B, Yong D (2009) The peculiar solar composition and its possible relation to planet formation. Astrophys J Lett 704(1):L66–L70. https://doi.org/10.1088/0004-637X/704/1/L66. arXiv:0909.2299
ADS
Article
Google Scholar
Mészáros S, Martell SL, Shetrone M, Lucatello S, Troup NW, Bovy J, Cunha K, García-Hernández DA, Overbeek JC, Allende Prieto C, Beers TC, Frinchaboy PM, García Pérez AE, Hearty FR, Holtzman J, Majewski SR, Nidever DL, Schiavon RP, Schneider DP, Sobeck JS, Smith VV, Zamora O, Zasowski G (2015) Exploring anticorrelations and light element variations in northern globular clusters observed by the APOGEE survey. Astron J 149:153. https://doi.org/10.1088/0004-6256/149/5/153. arXiv:1501.05127
ADS
Article
Google Scholar
Mikolaitis Š, Tautvaisiene G, Gratton R, Bragaglia A, Carretta E (2010) Chemical composition of clump stars in the open cluster NGC 6134. Mon Not R Astron Soc 407:1866–1874. https://doi.org/10.1111/j.1365-2966.2010.17030.x. arXiv:1005.3944
ADS
Article
Google Scholar
Milone AP, Bedin LR, Piotto G, Anderson J (2009) Multiple stellar populations in Magellanic Cloud clusters. I. An ordinary feature for intermediate age globulars in the LMC? Astron Astrophys 497:755–771. https://doi.org/10.1051/0004-6361/200810870. arXiv:0810.2558
ADS
Article
Google Scholar
Milone AP, Marino AF, Cassisi S, Piotto G, Bedin LR, Anderson J, Allard F, Aparicio A, Bellini A, Buonanno R, Monelli M, Pietrinferni A (2012a) The infrared eye of the wide-field camera 3 on the Hubble Space Telescope reveals multiple main sequences of very low mass stars in NGC 2808. Astrophys J Lett 754:L34. https://doi.org/10.1088/2041-8205/754/2/L34. arXiv:1206.5529
ADS
Article
Google Scholar
Milone AP, Marino AF, Piotto G, Bedin LR, Anderson J, Aparicio A, Cassisi S, Rich RM (2012b) A double main sequence in the globular cluster NGC 6397. Astrophys J 745:27. https://doi.org/10.1088/0004-637X/745/1/27. arXiv:1110.1077
ADS
Article
Google Scholar
Milone AP, Piotto G, Bedin LR, Aparicio A, Anderson J, Sarajedini A, Marino AF, Moretti A, Davies MB, Chaboyer B, Dotter A, Hempel M, Marín-Franch A, Majewski S, Paust NEQ, Reid IN, Rosenberg A, Siegel M (2012c) The ACS survey of Galactic globular clusters. XII. Photometric binaries along the main sequence. Astron Astrophys 540:A16. https://doi.org/10.1051/0004-6361/201016384. arXiv:1111.0552
ADS
Article
Google Scholar
Milone AP, Piotto G, Bedin LR, Cassisi S, Anderson J, Marino AF, Pietrinferni A, Aparicio A (2012d) Luminosity and mass functions of the three main sequences of the globular cluster NGC 2808. Astron Astrophys 537:A77. https://doi.org/10.1051/0004-6361/201116539. arXiv:1108.2391
ADS
Article
Google Scholar
Milone AP, Piotto G, Bedin LR, King IR, Anderson J, Marino AF, Bellini A, Gratton R, Renzini A, Stetson PB, Cassisi S, Aparicio A, Bragaglia A, Carretta E, D’Antona F, Di Criscienzo M, Lucatello S, Monelli M, Pietrinferni A (2012e) Multiple stellar populations in 47 Tucanae. Astrophys J 744:58. https://doi.org/10.1088/0004-637X/744/1/58. arXiv:1109.0900
ADS
Article
Google Scholar
Milone AP, Marino AF, Piotto G, Bedin LR, Anderson J, Aparicio A, Bellini A, Cassisi S, D’Antona F, Grundahl F, Monelli M, Yong D (2013) A WFC3/HST view of the three stellar populations in the globular cluster NGC 6752. Astrophys J 767:120. https://doi.org/10.1088/0004-637X/767/2/120. arXiv:1301.7044
ADS
Article
Google Scholar
Milone AP, Marino AF, Bedin LR, Piotto G, Cassisi S, Dieball A, Anderson J, Jerjen H, Asplund M, Bellini A, Brogaard K, Dotter A, Giersz M, Heggie DC, Knigge C, Rich RM, van den Berg M, Buonanno R (2014a) The M 4 Core Project with HST—II. Multiple stellar populations at the bottom of the main sequence. Mon Not R Astron Soc 439:1588–1595. https://doi.org/10.1093/mnras/stu030. arXiv:1401.1091
ADS
Article
Google Scholar
Milone AP, Marino AF, Dotter A, Norris JE, Jerjen H, Piotto G, Cassisi S, Bedin LR, Recio Blanco A, Sarajedini A, Asplund M, Monelli M, Aparicio A (2014b) Global and nonglobal parameters of horizontal-branch morphology of globular clusters. Astrophys J 785:21. https://doi.org/10.1088/0004-637X/785/1/21. arXiv:1312.4169
ADS
Article
Google Scholar
Milone AP, Marino AF, Piotto G, Bedin LR, Anderson J, Renzini A, King IR, Bellini A, Brown TM, Cassisi S, D’Antona F, Jerjen H, Nardiello D, Salaris M, Marel RP, Vesperini E, Yong D, Aparicio A, Sarajedini A, Zoccali M (2015a) The Hubble Space Telescope UV legacy survey of galactic globular clusters—II. The seven stellar populations of NGC 7089 (M2). Mon Not R Astron Soc 447:927–938. https://doi.org/10.1093/mnras/stu2446. arXiv:1411.5043
ADS
Article
Google Scholar
Milone AP, Marino AF, Piotto G, Renzini A, Bedin LR, Anderson J, Cassisi S, D’Antona F, Bellini A, Jerjen H, Pietrinferni A, Ventura P (2015b) The Hubble Space Telescope UV legacy survey of galactic globular clusters. III. A quintuple stellar population in NGC 2808. Astrophys J 808:51. https://doi.org/10.1088/0004-637X/808/1/51. arXiv:1505.05934
ADS
Article
Google Scholar
Milone AP, Marino AF, Bedin LR, Dotter A, Jerjen H, Kim D, Nardiello D, Piotto G, Cong J (2016) The binary populations of eight globular clusters in the outer halo of the Milky Way. Mon Not R Astron Soc 455:3009–3019. https://doi.org/10.1093/mnras/stv2415. arXiv:1510.05086
ADS
Article
Google Scholar
Milone AP, Marino AF, Bedin LR, Anderson J, Apai D, Bellini A, Bergeron P, Burgasser AJ, Dotter A, Rees JM (2017) The HST large programme on \(\omega \) Centauri–I. Multiple stellar populations at the bottom of the main sequence probed in NIR-Optical. Mon Not R Astron Soc 469:800–812. https://doi.org/10.1093/mnras/stx836. arXiv:1704.00418
ADS
Article
Google Scholar
Milone AP, Marino AF, Di Criscienzo M, D’Antona F, Bedin LR, Da Costa G, Piotto G, Tailo M, Dotter A, Angeloni R, Anderson J, Jerjen H, Li C, Dupree A, Granata V, Lagioia EP, Mackey AD, Nardiello D, Vesperini E (2018a) Multiple stellar populations in Magellanic Cloud clusters—VI. A survey of multiple sequences and Be stars in young clusters. Mon Not R Astron Soc 477:2640–2663. https://doi.org/10.1093/mnras/sty661. arXiv:1802.10538
ADS
Article
Google Scholar
Milone AP, Marino AF, Mastrobuono-Battisti A, Lagioia EP (2018b) Gaia unveils the kinematics of multiple stellar populations in 47 Tucanae. Mon Not R Astron Soc 479:5005–5011. https://doi.org/10.1093/mnras/sty1873. arXiv:1807.03511
ADS
Article
Google Scholar
Milone AP, Marino AF, Renzini A, D’Antona F, Anderson J, Barbuy B, Bedin LR, Bellini A, Brown TM, Cassisi S, Cordoni G, Lagioia EP, Nardiello D, Ortolani S, Piotto G, Sarajedini A, Tailo M, van der Marel RP, Vesperini E (2018c) The Hubble Space Telescope UV legacy survey of galactic globular clusters—XVI. The helium abundance of multiple populations. Mon Not R Astron Soc 481:5098–5122. https://doi.org/10.1093/mnras/sty2573. arXiv:1809.05006
ADS
Article
Google Scholar
Milone AP, Marino AF, Bedin LR, Anderson J, Apai D, Bellini A, Dieball A, Salaris M, Libralato M, Nardiello D, Bergeron P, Burgasser AJ, Rees JM, Rich RM, Richer HB (2019a) The HST Large Programme on NGC 6752—II. Multiple populations at the bottom of the main sequence probed in NIR. Mon Not R Astron Soc 484(3):4046–4053. https://doi.org/10.1093/mnras/stz277. arXiv:1901.07230
ADS
Article
Google Scholar
Milone AP, Marino AF, Bedin LR, Anderson J, Apai D, Bellini A, Dieball A, Salaris M, Libralato M, Nardiello D, Bergeron P, Burgasser AJ, Rees JM, Rich RM, Richer HB (2019b) The HST Large Programme on NGC 6752. II. Multiple populations at the bottom of the main sequence probed in NIR. Mon Not R Astron Soc. https://doi.org/10.1093/mnras/stz277. arXiv:1901.07230
ADS
Article
Google Scholar
Moe M, Di Stefano R (2017) Mind your Ps and Qs: the interrelation between period (P) and mass-ratio (Q) distributions of binary stars. Astrophys J Suppl 230:15. https://doi.org/10.3847/1538-4365/aa6fb6. arXiv:1606.05347
ADS
Article
Google Scholar
Moe M, Kratter KM, Badenes C (2019) The close binary fraction of solar-type stars is strongly anti-correlated with metallicity. Astrophys J 875:61. https://doi.org/10.3847/1538-4357/ab0d88. arXiv:1808.02116
ADS
Article
Google Scholar
Moehler S, Sweigart AV, Landsman WB, Hammer NJ, Dreizler S (2004) Spectroscopic analyses of the blue hook stars in NGC 2808: a more stringent test of the late hot flasher scenario. Astron Astrophys 415:313–323. https://doi.org/10.1051/0004-6361:20034505. arXiv:astro-ph/0311215
ADS
Article
Google Scholar
Monaco L, Bonifacio P, Sbordone L, Villanova S, Pancino E (2010) The lithium content of \(\omega \). Centauri New clues to the cosmological Li problem from old stars in external galaxies. Astron Astrophys 519:L3. https://doi.org/10.1051/0004-6361/201015162. arXiv:1008.1817
ADS
Article
Google Scholar
Monaco L, Villanova S, Bonifacio P, Caffau E, Geisler D, Marconi G, Momany Y, Ludwig HG (2012) Lithium and sodium in the globular cluster. Detection of a Li-rich dwarf star: preservation or pollution? Astron Astrophys 539:A157. https://doi.org/10.1051/0004-6361/201117709. arXiv:1108.0138
ADS
Article
Google Scholar
Monelli M, Milone AP, Stetson PB, Marino AF, Cassisi S, del Pino MA, Salaris M, Aparicio A, Asplund M, Grundahl F, Piotto G, Weiss A, Carrera R, Cebrián M, Murabito S, Pietrinferni A, Sbordone L (2013) The SUMO project I. A survey of multiple populations in globular clusters. Mon Not R Astron Soc 431:2126–2149. https://doi.org/10.1093/mnras/stt273. arXiv:1303.5187
ADS
Article
Google Scholar
Moody K, Sigurdsson S (2009) Modeling the retention probability of black holes in globular clusters: kicks and rates. Astrophys J 690:1370–1377. https://doi.org/10.1088/0004-637X/690/2/1370. arXiv:0809.1617
ADS
Article
Google Scholar
Moretti A, de Angeli F, Piotto G (2008) Environmental effects on the globular cluster blue straggler population: a statistical approach. Astron Astrophys 483:183–197. https://doi.org/10.1051/0004-6361:20078416
ADS
Article
Google Scholar
Muñoz C, Villanova S, Geisler D, Saviane I, Dias B, Cohen RE, Mauro F (2017) The peculiar Na–O anticorrelation of the bulge globular cluster NGC 6440. Astron Astrophys 605:A12. https://doi.org/10.1051/0004-6361/201730468. arXiv:1705.02684
ADS
Article
Google Scholar
Muñoz C, Geisler D, Villanova S, Saviane I, Cortés CC, Dias B, Cohen RE, Mauro F, Moni Bidin C (2018) Chemical analysis of NGC 6528: one of the most metal-rich bulge globular clusters. Astron Astrophys 620:A96. https://doi.org/10.1051/0004-6361/201833373. arXiv:1809.04164
ADS
Article
Google Scholar
Mucciarelli A, Origlia L, Ferraro FR, Pancino E (2009) Looking outside the galaxy: the discovery of chemical anomalies in three old large magellanic cloud clusters. Astrophys J Lett 695:L134–L139. https://doi.org/10.1088/0004-637X/695/2/L134. arXiv:0902.4778
ADS
Article
Google Scholar
Mucciarelli A, Salaris M, Lovisi L, Ferraro FR, Lanzoni B, Lucatello S, Gratton RG (2011) Lithium abundance in the globular cluster M4: from the turn-off to the red giant branch bump. Mon Not R Astron Soc 412:81–94. https://doi.org/10.1111/j.1365-2966.2010.17884.x. arXiv:1010.3879
ADS
Article
Google Scholar
Mucciarelli A, Bellazzini M, Ibata R, Merle T, Chapman SC, Dalessandro E, Sollima A (2012) News from the Galactic suburbia: the chemical composition of the remote globular cluster NGC 2419. Mon Not R Astron Soc 426:2889–2900. https://doi.org/10.1111/j.1365-2966.2012.21847.x. arXiv:1208.0195
ADS
Article
Google Scholar
Mucciarelli A, Salaris M, Bonifacio P (2012b) Giants reveal what dwarfs conceal: Li abundance in lower red giant branch stars as diagnostic of the primordial Li. Mon Not R Astron Soc 419:2195–2205. https://doi.org/10.1111/j.1365-2966.2011.19870.x. arXiv:1109.4589
ADS
Article
Google Scholar
Mucciarelli A, Bellazzini M, Catelan M, Dalessandro E, Amigo P, Correnti M, Cortés C, D’Orazi V (2013) NGC 5694: another foster son of the Galactic halo. Mon Not R Astron Soc 435:3667–3680. https://doi.org/10.1093/mnras/stt1558. arXiv:1308.6653
ADS
Article
Google Scholar
Mucciarelli A, Dalessandro E, Ferraro FR, Origlia L, Lanzoni B (2014a) No evidence of chemical anomalies in the bimodal turnoff cluster NGC 1806 in the Large Magellanic Cloud. Astrophys J Lett 793:L6. https://doi.org/10.1088/2041-8205/793/1/L6. arXiv:1409.0259
ADS
Article
Google Scholar
Mucciarelli A, Salaris M, Bonifacio P, Monaco L, Villanova S (2014b) The cosmological lithium problem outside the Galaxy: the Sagittarius globular cluster M54. Mon Not R Astron Soc 444:1812–1820. https://doi.org/10.1093/mnras/stu1522. arXiv:1407.7596
ADS
Article
Google Scholar
Mucciarelli A, Bellazzini M, Merle T, Plez B, Dalessandro E, Ibata R (2015a) Potassium: a new actor on the globular cluster chemical evolution stage. The case of NGC 2808. Astrophys J 801:68. https://doi.org/10.1088/0004-637X/801/1/68. arXiv:1501.03161
ADS
Article
Google Scholar
Mucciarelli A, Lapenna E, Massari D, Pancino E, Stetson PB, Ferraro FR, Lanzoni B, Lardo C (2015b) A chemical Trompe-L’oeil: no iron spread in the globular cluster M22. Astrophys J 809:128. https://doi.org/10.1088/0004-637X/809/2/128. arXiv:1507.01596
ADS
Article
Google Scholar
Mucciarelli A, Dalessandro E, Massari D, Bellazzini M, Ferraro FR, Lanzoni B, Lardo C, Salaris M, Cassisi S (2016) NGC 6362: the least massive globular cluster with chemically distinct multiple populations. Astrophys J 824:73. https://doi.org/10.3847/0004-637X/824/2/73. arXiv:1604.04151
ADS
Article
Google Scholar
Mucciarelli A, Lapenna E, Ferraro FR, Lanzoni B (2018) The chemical composition of NGC 5824, a globular cluster without iron spread but with an extreme Mg–Al anticorrelation. Astrophys J 859:75. https://doi.org/10.3847/1538-4357/aaba80. arXiv:1803.09759
ADS
Article
Google Scholar
Mucciarelli A, Lapenna E, Lardo C, Bonifacio P, Ferraro FR, Lanzoni B (2019) Confirming the presence of second-population stars and the iron discrepancy along the AGB of the globular cluster NGC 6752. Astrophys J 870:124. https://doi.org/10.3847/1538-4357/aaf3a4. arXiv:1811.10626
ADS
Article
Google Scholar
Myeong GC, Evans NW, Belokurov V, Sanders JL, Koposov SE (2018a) Discovery of new retrograde substructures: the shards of \(\omega \) Centauri? Mon Not R Astron Soc 478:5449–5459. https://doi.org/10.1093/mnras/sty1403
ADS
Article
Google Scholar
Myeong GC, Evans NW, Belokurov V, Sanders JL, Koposov SE (2018b) The Milky Way Halo in action space. Astrophys J Lett 856:L26. https://doi.org/10.3847/2041-8213/aab613. arXiv:1802.03351
ADS
Article
Google Scholar
Myeong GC, Evans NW, Belokurov V, Sanders JL, Koposov SE (2018c) The sausage globular clusters. Astrophys J Lett 863:L28. https://doi.org/10.3847/2041-8213/aad7f7. arXiv:1805.00453
ADS
Article
Google Scholar
Nardiello D, Piotto G, Milone AP, Marino AF, Bedin LR, Anderson J, Aparicio A, Bellini A, Cassisi S, D’Antona F, Hidalgo S, Ortolani S, Pietrinferni A, Renzini A, Salaris M, Marel RP, Vesperini E (2015) The Hubble Space Telescope UV legacy survey of galactic globular clusters—IV. Helium content and relative age of multiple stellar populations within NGC 6352. Mon Not R Astron Soc 451:312–322. https://doi.org/10.1093/mnras/stv971. arXiv:1504.07876
ADS
Article
Google Scholar
Nardiello D, Libralato M, Piotto G, Anderson J, Bellini A, Aparicio A, Bedin LR, Cassisi S, Granata V, King IR, Lucertini F, Marino AF, Milone AP, Ortolani S, Platais I, van der Marel RP (2018a) The Hubble Space Telescope UV legacy survey of galactic globular clusters—XVII. Public catalogue release. Mon Not R Astron Soc 481:3382–3393. https://doi.org/10.1093/mnras/sty2515. arXiv:1809.04300
ADS
Article
Google Scholar
Nardiello D, Milone AP, Piotto G, Anderson J, Bedin LR, Bellini A, Cassisi S, Libralato M, Marino AF (2018b) The Hubble Space Telescope UV legacy survey of galactic globular clusters—XIV. Multiple stellar populations within M 15 and their radial distribution. Mon Not R Astron Soc 477:2004–2019. https://doi.org/10.1093/mnras/sty719. arXiv:1803.05979
ADS
Article
Google Scholar
Nataf DM, Gould A, Pinsonneault MH, Stetson PB (2011) The gradients in the 47 tuc red giant branch bump and horizontal branch are consistent with a centrally concentrated, helium-enriched second stellar generation. Astrophys J 736:94. https://doi.org/10.1088/0004-637X/736/2/94. arXiv:1102.3916
ADS
Article
Google Scholar
Nataf DM, Wyse R, Schiavon RP, Ting YS, Minniti D, Cohen RE, Fernández-Trincado JG, Geisler D, Nitschelm C, Frinchaboy PM (2019) The relationship between globular cluster mass, metallicity, and light element abundance variations. Astron J 158:14. https://doi.org/10.3847/1538-3881/ab1a27. arXiv:1904.07884
ADS
Article
Google Scholar
Navarrete C, Chanamé J, Ramírez I, Meza A, Anglada-Escudé G, Shkolnik E (2015) The Kapteyn moving group is not tidal debris from \(\omega \) Centauri. Astrophys J 808:103. https://doi.org/10.1088/0004-637X/808/1/103. arXiv:1506.02041
ADS
Article
Google Scholar
Niederhofer F, Bastian N, Kozhurina-Platais V, Hilker M, de Mink SE, Cabrera-Ziri I, Li C, Ercolano B (2016) Controversial age spreads from the main sequence turn-off and red clump in intermediate-age clusters in the LMC. Astron Astrophys 586:A148. https://doi.org/10.1051/0004-6361/201526484. arXiv:1510.08476
Article
Google Scholar
Niederhofer F, Bastian N, Kozhurina-Platais V, Larsen S, Hollyhead K, Lardo C, Cabrera-Ziri I, Kacharov N, Platais I, Salaris M, Cordero M, Dalessandro E, Geisler D, Hilker M, Li C, Mackey D, Mucciarelli A (2017a) The search for multiple populations in Magellanic Cloud clusters—II. The detection of multiple populations in three intermediate-age SMC clusters. Mon Not R Astron Soc 465:4159–4165. https://doi.org/10.1093/mnras/stw3084. arXiv:1612.00400
ADS
Article
Google Scholar
Niederhofer F, Bastian N, Kozhurina-Platais V, Larsen S, Salaris M, Dalessandro E, Mucciarelli A, Cabrera-Ziri I, Cordero M, Geisler D, Hilker M, Hollyhead K, Kacharov N, Lardo C, Li C, Mackey D, Platais I (2017b) The search for multiple populations in Magellanic Cloud clusters—I. Two stellar populations in the Small Magellanic Cloud globular cluster NGC 121. Mon Not R Astron Soc 464:94–103. https://doi.org/10.1093/mnras/stw2269. arXiv:1609.01595
ADS
Article
Google Scholar
Nissen PE, Schuster WJ (2010) Two distinct halo populations in the solar neighborhood. Evidence from stellar abundance ratios and kinematics. Astron Astrophys 511:L10. https://doi.org/10.1051/0004-6361/200913877. arXiv:1002.4514
ADS
Article
Google Scholar
Norris J, Smith GH (1983) The cyanogen distribution of the giants in NGC 2808. Astrophys J 275:120–124. https://doi.org/10.1086/161517
ADS
Article
Google Scholar
Norris J, Cottrell PL, Freeman KC, Da Costa GS (1981) The abundance spread in the giants of NGC 6752. Astrophys J 244:205–220. https://doi.org/10.1086/158698
ADS
Article
Google Scholar
Norris JE (2004) The helium abundances of \(\omega \) Centauri. Astrophys J Lett 612:L25–L28. https://doi.org/10.1086/423986
ADS
Article
Google Scholar
Norris JE, Da Costa GS (1995) The giant branch of \(\omega \) Centauri. IV. Abundance patterns based on Echelle spectra of 40 red giants. Astrophys J 447:680. https://doi.org/10.1086/175909
ADS
Article
Google Scholar
Odenkirchen M, Grebel EK, Rockosi CM, Dehnen W, Ibata R, Rix HW, Stolte A, Wolf C, Anderson JE Jr, Bahcall NA, Brinkmann J, Csabai I, Hennessy G, Hindsley RB, Ivezić Ž, Lupton RH, Munn JA, Pier JR, Stoughton C, York DG (2001) Detection of massive tidal tails around the globular Cluster Palomar 5 with Sloan Digital Sky Survey commissioning data. Astrophys J Lett 548:L165–L169. https://doi.org/10.1086/319095. arXiv:astro-ph/0012311
ADS
Article
Google Scholar
Odenkirchen M, Grebel EK, Dehnen W, Rix HW, Yanny B, Newberg HJ, Rockosi CM, Martínez-Delgado D, Brinkmann J, Pier JR (2003) The extended tails of Palomar 5: A 10 deg arc of globular cluster tidal debris. Astron J 126:2385–2407. https://doi.org/10.1086/378601. arXiv:astro-ph/0307446
ADS
Article
Google Scholar
Oh KS, Lin DNC (1992) Tidal evolution of globular clusters. II. The effects of Galactic tidal field and diffusion. Astrophys J 386:519–538. https://doi.org/10.1086/171037
ADS
Article
Google Scholar
Olszewski EW, Schommer RA, Suntzeff NB, Harris HC (1991) Spectroscopy of giants in LMC clusters. I. Velocities, abundances, and the age-metallicity relation. Astron J 101:515–537. https://doi.org/10.1086/115701
ADS
Article
Google Scholar
Olszewski EW, Saha A, Knezek P, Subramaniam A, de Boer T, Seitzer P (2009) A 500 Parsec halo surrounding the galactic globular NGC 1851. Astron J 138:1570–1576. https://doi.org/10.1088/0004-6256/138/6/1570. arXiv:0909.1755
ADS
Article
Google Scholar
O’Malley EM, Knaizev A, McWilliam A, Chaboyer B (2017) High-resolution spectroscopic abundances of red giant branch stars in NGC 6681. Astrophys J 846:23. https://doi.org/10.3847/1538-4357/aa7b72. arXiv:1706.06962
ADS
Article
Google Scholar
Ostriker JP, Spitzer L Jr, Chevalier RA (1972) On the evolution of globular clusters. Astrophys J Lett 176:L51. https://doi.org/10.1086/181018
ADS
Article
Google Scholar
Otsuki K, Honda S, Aoki W, Kajino T, Mathews GJ (2006) Neutron-capture elements in the metal-poor globular cluster M15. Astrophys J Lett 641:L117–L120. https://doi.org/10.1086/504106. arXiv:astro-ph/0603328
ADS
Article
Google Scholar
Overbeek JC, Friel ED, Donati P, Smiljanic R, Jacobson HR, Hatzidimitriou D, Held EV, Magrini L, Bragaglia A, Randich S, Vallenari A, Cantat-Gaudin T, Tautvaisiene G, Jiménez-Esteban F, Frasca A, Geisler D, Villanova S, Tang B, Muñoz C, Marconi G, Carraro G, San Roman I, Drazdauskas A, Ženoviene R, Gilmore G, Jeffries RD, Flaccomio E, Pancino E, Bayo A, Costado MT, Damiani F, Jofré P, Monaco L, Prisinzano L, Sousa SG, Zaggia S (2017) The Gaia-ESO Survey: the inner disk, intermediate-age open cluster Trumpler 23. Astron Astrophys 598:A68. https://doi.org/10.1051/0004-6361/201629345. arXiv:1611.00859
Article
Google Scholar
Pace G, Recio-Blanco A, Piotto G, Momany Y (2006) Abundance anomalies in hot horizontal branch stars of the Galactic globular cluster NGC 2808. Astron Astrophys 452:493–501. https://doi.org/10.1051/0004-6361:20054593
ADS
Article
Google Scholar
Pace G, Castro M, Meléndez J, Théado S, do Nascimento JD Jr, (2012) Lithium in M 67: from the main sequence to the red giant branch. Astron Astrophys 541:A150. https://doi.org/10.1051/0004-6361/201117704. arXiv:1203.4440
ADS