Skip to main content
Log in

A density-and-strain-based K-clustering approach to microstructural topology optimization

  • Research Paper
  • Published:
Structural and Multidisciplinary Optimization Aims and scope Submit manuscript

Abstract

Microstructural topology optimization (MTO) is the simultaneous optimization of macroscale topology and microscale structure. MTO holds the promise of enhancing product-performance beyond what is possible today. Furthermore, with the advent of additive manufacturing, the resulting multiscale structures can be fabricated with relative ease. There are however two significant challenges associated with MTO: (1) high computational cost, and (2) potential loss of microstructural connectivity. In this paper, a novel density-and-strain-based K-means clustering method is proposed to reduce the computational cost of MTO. Further, a rotational degree of freedom is introduced to fully utilize the anisotropic nature of microstructures. Finally, the connectivity issue is addressed through auxiliary finite element fields. The proposed concepts are illustrated through several numerical examples applied to two-dimensional single-load problems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21

Similar content being viewed by others

References

  • Alexandersen J, Lazarov BS (2015) Topology optimisation of manufacturable microstructural details without length scale separation using a spectral coarse basis preconditioner. Comput Meth Appl Mech Eng 290(290):156–182. arXiv:1411.3923

    MathSciNet  MATH  Google Scholar 

  • Allaire G, Aubry S (1999) On optimal microstructures for a plane shape optimization problem. Structural Optimization 17(2):86–94

    Google Scholar 

  • Allaire G, Geoffroy-Donders P, Pantz O (2018) Topology optimization of modulated and oriented periodic microstructures by the homogenization method. Computers and Mathematics with Applications

  • Arthur D, Vassilvitskii S (2007) K-means++: the advantages of careful seeding. Proceedings of the eighteenth annual ACM-SIAM symposium on Discrete algorithms, pp 1027–1025. arXiv:1212.1121

  • Avellaneda M (1987) Optimal bounds and microgeometries for elastic two-phase composites. Siam J Appl Math 47(6):1216–1228

    MathSciNet  MATH  Google Scholar 

  • Bendsøe MP (1989) Optimal shape design as a material distribution problem. Structural Optimization 1 (4):193–202

    Google Scholar 

  • Bendsøe MP, Kikuchi N (1988) Generating optimal topologies in structural design using a homogenization method. Comput Methods Appl Mech Eng 71(2):197–224

    MathSciNet  MATH  Google Scholar 

  • Bendsøe MP, Sigmund O (1999) Material interpolation schemes in topology optimization. Arch Appl Mech 69(9-10):635–654

    MATH  Google Scholar 

  • Bendsøe MP, Sigmund O (2004) Topology optimization. Springer, Berlin

    MATH  Google Scholar 

  • Bendsøe MP, Guedes JM, Haber RB, Pedersen P, Taylor JE (1994) An analytical model to predict optimal material properties in the context of optimal structural design. J Appl Mech 61(4):930

    MathSciNet  MATH  Google Scholar 

  • Coelho PG, Fernandes PR, Guedes JM, Rodrigues HC (2008) A hierarchical model for concurrent material and topology optimisation of three-dimensional structures. Struct Multidiscip Opt 35(2):107–115

    Google Scholar 

  • Cramer AD, Challis VJ, Roberts AP (2016) Microstructure interpolation for macroscopic design. Struct Multidiscip Optim 53(3):489–500

    MathSciNet  Google Scholar 

  • Deng J, Chen W (2017) Concurrent topology optimization of multiscale structures with multiple porous materials under random field loading uncertainty. Struct Multidiscip Optim 56(1):1–19

    MathSciNet  Google Scholar 

  • Deng S, Suresh K (2015) Multi-constrained topology optimization via the topological sensitivity. Struct Multidiscip Optim 51(5):987–1001

    MathSciNet  Google Scholar 

  • Deng S, Suresh K (2017) Stress constrained thermo-elastic topology optimization with varying temperature fields via augmented topological sensitivity based level-set. Structural and Multidisciplinary Optimization 56(6):1413–1427

    MathSciNet  Google Scholar 

  • Deng J, Yan J, Cheng G (2013) Multi-objective concurrent topology optimization of thermoelastic structures composed of homogeneous porous material. Struct Multidiscip Optim 47(4):583–597

    MathSciNet  MATH  Google Scholar 

  • Du Z, Zhou X, Picelli R, Kim HA (2018) Connecting microstructures for multiscale topology optimization with connectivity index constraints. J Mech Des 140(11):111417

    Google Scholar 

  • Ferrer A, Cante JC, Hernández JA, Oliver J (2017) Two-scale topology optimization in computational material design: an integrated approach. Int J Numer Methods Eng 114:232–254

    MathSciNet  Google Scholar 

  • Francfort GA, Murat F (1986) Homogenization and optimal bounds in linear elasticity. Arch Ration Mech Anal 94(4):307–334

    MathSciNet  MATH  Google Scholar 

  • Gao W, Zhang Y, Ramanujan D, Ramani K, Chen Y, Williams CB, Wang CCL, Shin YC, Zhang S, Zavattieri PD (2015) The status, challenges, and future of additive manufacturing in engineering. CAD Computer Aided Design 69:65–89

    Google Scholar 

  • Groen JP, Sigmund O (2018) Homogenization-based topology optimization for high-resolution manufacturable microstructures. Int J Numer Methods Eng 113(8):1148–1163

    MathSciNet  Google Scholar 

  • Groen JP, Wu J, Sigmund O (2019) Homogenization-based stiffness optimization and projection of 2D coated structures with orthotropic infill. Computer Methods in Applied Mechanics and Engineering

  • Hassani B, Hinton E (1998) A review of homogenization and topology optimization i - homogenization theory for media with periodic structure. Comput Struct 69(6):707–717

    MATH  Google Scholar 

  • Hashin Z, Shtrikman S (1962) A variational approach to the theory of the elastic behaviour of polycrystals. J Mech Phys Solids 10(4):343–352

    MathSciNet  MATH  Google Scholar 

  • Huang X, Radman A, Xie YM (2011) Topological design of microstructures of cellular materials for maximum bulk or shear modulus. Comput Mater Sci 50(6):1861–1870. arXiv:0702674v1

    Google Scholar 

  • Huang X, Zhou SW, Xie YM, Li Q (2013) Topology optimization of microstructures of cellular materials and composites for macrostructures. Comput Mater Sci 67:397–407

    Google Scholar 

  • Jog CS, Haber RB, Bendsøe MP (1994) Topology design with optimized, self-adaptive materials. Int J Numer Meth Eng 37(8):1323–1350

    MathSciNet  MATH  Google Scholar 

  • Kočvara M, Stingl M, Zowe J (2008) Free material optimization: recent progress. Optimization 57 (1):79–100

    MathSciNet  MATH  Google Scholar 

  • Li H, Luo Z, Gao L, Qin Q (2018) Topology optimization for concurrent design of structures with multi-patch microstructures by level sets. Comput Methods Appl Mech Eng 328:340–364

    MathSciNet  MATH  Google Scholar 

  • Liu ST, Cheng GD, Gu Y, Zheng XG (2002) Mapping method for sensitivity analysis of composite material property. Struct Multidiscip Optim 24(3):212–217

    Google Scholar 

  • Liu L, Yan J, Cheng G (2008) Optimum structure with homogeneous optimum truss-like material. Comput Struct 86(13-14):1417–1425

    Google Scholar 

  • Liu C, Du Z, Zhang W, Zhu Y, Guo X (2017) Additive manufacturing-oriented design of graded lattice structures through explicit topology optimization. J Appl Mech 84(8):081008

    Google Scholar 

  • Liu K, Detwiler D, Tovar A (2018a) Cluster-based optimization of cellular materials and structures for crashworthiness. J Mech Des 140(11):111412

  • Liu J, Gaynor AT, Chen S, Kang Z, Suresh K, Takezawa A, Li L, Kato J, Tang J, Wang CC, Cheng L, Liang X, To AC (2018b) Current and future trends in topology optimization for additive manufacturing. Struct Multidiscip Opt 57(6):2457–2483

  • Lloyd SP (1982) Least squares quantization in PCM. IEEE Trans Inf Theory 28(2):129–137

    MathSciNet  MATH  Google Scholar 

  • Milton GW, Cherkaev AV (1995) Which elasticity tensors are realizable? J Eng Mater Technol 117(4):483

    Google Scholar 

  • Nakshatrala PB, Tortorelli DA, Nakshatrala KB (2013) Nonlinear structural design using multiscale topology optimization. Part I: Static formulation. Comput Meth Appl Mech Eng 261-262:167–176

    MathSciNet  MATH  Google Scholar 

  • Novotny AA, Feijóo RA, Taroco E, Padra C (2003) Topological sensitivity analysis. Comput Methods Appl Mech Eng 192(7-8):803–829

    MathSciNet  MATH  Google Scholar 

  • Osanov M, Guest JK (2016) Topology optimization for architected materials design. Annu Rev Mater Res 46(1):211–233

    Google Scholar 

  • Pantz O, Trabelsi K (2008) A post-treatment of the homogenization method for shape optimization. SIAM J Control Optim 47(3):1380–1398

    MathSciNet  MATH  Google Scholar 

  • Pedersen P (1989) On optimal orientation of orthotropic materials. Structural Optimization 1(2):101–106

    Google Scholar 

  • Rodrigues HC, Guedes JM (2002) Hierarchical optimization of material and structure. Struct Multidiscip Opt 24(1):1–10

    Google Scholar 

  • Schury F, Stingl M, Wein F (2012) Efficient two-scale optimization of manufacturable graded structures. SIAM J Sci Comput 34(6):B711–B733. arXiv:1309.5548v1

    MathSciNet  MATH  Google Scholar 

  • Sethian JA, Wiegmann A (2000) Structural boundary design via level set and immersed interface methods. J Comput Phys 163(2):489–528. arXiv:1011.1669v3

    MathSciNet  MATH  Google Scholar 

  • Sigmund O (1994) Materials with prescribed constitutive parameters: an inverse homogenization problem. Int J Solids Struct 31(17):2313–2329

    MathSciNet  MATH  Google Scholar 

  • Sigmund O (2000) New class of extremal composites. J Mech Phys Solids 48(2):397–428

    MathSciNet  MATH  Google Scholar 

  • Sigmund O (2001) A 99 line topology optimization code written in matlab. Struct Multidiscip Optim 21 (2):120–127

    Google Scholar 

  • Sigmund O (2007) Morphology-based black and white filters for topology optimization. Struct Multidiscip Optim 33(4-5):401–424

    Google Scholar 

  • Sigmund O, Maute K (2013) Topology optimization approaches: a comparative review. Struct Multidiscip Optim 48(6):1031–1055

    MathSciNet  Google Scholar 

  • Sigmund O, Torquato S (1997) Design of materials with extreme thermal expansion using a three-phase topology optimization method. J Mech Phys Solids 45(6):1037–1067

    MathSciNet  Google Scholar 

  • Sigmund O, Aage N, Andreassen E (2016) On the (non-)optimality of Michell structures. Struct Multidiscip Optim 54(2):361–373

    MathSciNet  Google Scholar 

  • Sivapuram R, Dunning PD, Kim HA (2016) Simultaneous material and structural optimization by multiscale topology optimization. Struct Multidiscip Optim 54(5):1267–1281

    MathSciNet  Google Scholar 

  • Vigdergauz SB (1989) Regular structures with extremal elastic properties. Mechanics of Solids 24(3):57–63

    Google Scholar 

  • Vigdergauz S (1994) Two-dimensional grained composites of extreme rigidity. J Appl Mech 61(2):390

    MATH  Google Scholar 

  • Vogiatzis P, Chen S, Wang X, Li T, Wang L (2017) Topology optimization of multi-material negative poisson’s ratio metamaterials using a reconciled level set method. CAD Computer Aided Design 83:15–32

    MathSciNet  Google Scholar 

  • Wang M, Wang X, Guo D (2003) A level set method for structural topology optimization. Comput Methods Appl Mech Eng 192(1-2):227–246

    MathSciNet  MATH  Google Scholar 

  • Wang Y, Chen F, Wang MY (2017a) Concurrent design with connectable graded microstructures. Comput Methods Appl Mech Eng 317:84–101

  • Wang Y, Xu H, Pasini D (2017b) Multiscale isogeometric topology optimization for lattice materials. Comput Methods Appl Mech Eng 316:568–585

  • Xie YM, Steven GP (1993) A simple evolutionary procedure for structural optimization. Comput Struct 49(5):885–896

    Google Scholar 

  • Xie YM, Yang X, Shen J, Yan X, Ghaedizadeh A, Rong J, Huang X, Zhou S (2014) Designing orthotropic materials for negative or zero compressibility. Int J Solids Struct 51(23-24):4038–4051

    Google Scholar 

  • Xu L, Cheng G (2018) Two-scale concurrent topology optimization with multiple micro materials based on principal stress orientation. Struct Multidiscip Optim 57(5):2093–2107

    MathSciNet  Google Scholar 

  • Yan X, Huang X, Zha Y, Xie YM (2014) Concurrent topology optimization of structures and their composite microstructures. Comput Struct 133:103–110

    Google Scholar 

  • Yang XY, Xei YM, Steven GP, Querin OM (1999) Bidirectional evolutionary method for stiffness optimization. AIAA J 37(11):1483–1488

    Google Scholar 

  • Zhang W, Sun S (2006) Scale-related topology optimization of cellular materials and structures. Int J Numer Methods Eng 68(9):993–1011

    MATH  Google Scholar 

  • Zhang Y, Xiao M, Li H, Gao L, Chu S (2018) Multiscale concurrent topology optimization for cellular structures with multiple microstructures based on ordered SIMP interpolation. Comput Mater Sci 155:74–91

    Google Scholar 

  • Zhou S, Li Q (2008) Design of graded two-phase microstructures for tailored elasticity gradients. J Mater Sci 43(15):5157–5167

    Google Scholar 

  • Zhu Y, Li S, Du Z, Liu C, Guo X, Zhang W (2019) A novel asymptotic-analysis-based homogenisation approach towards fast design of infill graded microstructures. J Mech Phys Solids 124:612–633

    MathSciNet  Google Scholar 

Download references

Funding

The authors would like to thank the support of the National Science Foundation through grant 1561899. Prof. Krishnan is a consulting Chief Scientific Officer of SciArt, Corp, which has licensed the Pareto technology, developed in Prof. Suresh’s lab, through Wisconsin Alumni Research Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tej Kumar.

Ethics declarations

Conflict of interests

The authors declare that they have no conflict of interest.

Additional information

Responsible Editor: Ole Sigmund

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, T., Suresh, K. A density-and-strain-based K-clustering approach to microstructural topology optimization. Struct Multidisc Optim 61, 1399–1415 (2020). https://doi.org/10.1007/s00158-019-02422-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00158-019-02422-4

Keywords

Navigation