Skip to main content
Log in

A new uncertainty propagation method considering multimodal probability density functions

  • Research Paper
  • Published:
Structural and Multidisciplinary Optimization Aims and scope Submit manuscript

Abstract

In practical engineering applications, random variables may follow multimodal distributions with multiple modes in the probability density functions, such as the structural fatigue stress of a steel bridge carrying both highway and railway traffic and the vibratory load of a blade subject to stochastic dynamic excitations, etc. Traditional uncertainty propagation methods are mainly used to treat random variables with only unimodal probability density functions, which, therefore, tend to result in large computational errors when multimodal probability density functions are involved. In this paper, an uncertainty propagation method is developed for problems in which multimodal probability density functions are involved. Firstly, the multimodal probability density functions of input random variables are established using the Gaussian mixture model. Secondly, the uncertainties of the input random variables are propagated to the response function through an integration of the sparse grid numerical method and maximum entropy method. Finally, the convergence mechanism is developed to improve the uncertainty propagation accuracy step by step. Two numerical examples and one engineering application are studied to demonstrate the effectiveness of the proposed method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  • Amirinia G, Kamranzad B, Mafi S (2017) Wind and wave energy potential in southern Caspian Sea using uncertainty analysis. Energy 120:332–345

    Article  Google Scholar 

  • Augusti G, Baratta A, Casciati F (1984) Probabilistic methods in structural engineering. Chapman and Hall

  • Balakrishnan S, Wainwright MJ, Yu B (2017) Statistical guarantees for the EM algorithm: from population to sample-based analysis. Ann Stat 45(1):77–120

    Article  MathSciNet  MATH  Google Scholar 

  • Ballaben JS, Sampaio R, Rosales MB (2017) Uncertainty quantification in the dynamics of a guyed mast subjected to wind load. Eng Struct 132:456–470

    Article  Google Scholar 

  • Ban Z, Liu J, Cao L (2018) Superpixel segmentation using Gaussian mixture model. IEEE Trans Image Process 27(8):4105–4117

    Article  MathSciNet  MATH  Google Scholar 

  • Brietung K (1984) Asymptotic approximations for multinormal integral. J Eng Mech 110(3):357–366

    Article  Google Scholar 

  • Bucher CG (1988) Adaptive sampling-an iterative fast Monte Carlo procedure. Struct Saf 5(2):119–126

    Article  Google Scholar 

  • Dempster A, Laird N, Rubin D (1977) Maximum likelihood estimation from incomplete data via the EM algorithm. J R Stat Soc B 39:1–38

  • Doltsinis I, Kang Z (2004) Robust design of structures using optimization methods. Comput Methods Appl Mech Eng 193(23–26):2221–2237

    Article  MATH  Google Scholar 

  • Du X, Chen W (2002) Sequential optimization and reliability assessment method for efficient probabilistic design. J Mech Des 126(2):871–880

    Google Scholar 

  • Echard B, Gayton N, Lemaire M (2011) AK-MCS: an active learning reliability method combining kriging and Monte Carlo simulation. Struct Saf 33:145–154

    Article  Google Scholar 

  • Figueiredo MAT, Jian AK (2002) Unsupervised learning of finite mixture models. IEEE Trans Pattern Anal Mach Intell 24(3):381–396

    Article  Google Scholar 

  • Gerstner T, Griebel M (1998) Dimension integration using sparse grids. Numerical Algorithms 18(3–4):209–232

    Article  MathSciNet  MATH  Google Scholar 

  • Haider SW, Harichandran RS, Dwaikat MB (2009) Closed-form solutions for bimodal axle load spectra and relative pavement damage estimation. J Transp Eng 135(12):974–983

    Article  Google Scholar 

  • He J, Gao S, Gong J (2014) A sparse grid stochastic collocation method for structural reliability analysis. Struct Saf 51:29–34

    Article  Google Scholar 

  • He J, Guan X, Jha R (2016) Improve the accuracy of asymptotic approximation in reliability problems involving multimodal distributions. IEEE Trans Reliab 65(4):1724–1736

    Article  Google Scholar 

  • Hu Z, Du X (2017) A mean value reliability method for bimodal distributions, in: Proceedings of the ASME 2017 International Design Engineering Technical Conference & Computers and Information in Engineering Conference, Paper DETC 2017–67279

  • Jaynes ET (1957) Information theory and statistical mechanics. Phys Rev 106(4):620

    Article  MathSciNet  MATH  Google Scholar 

  • Keshavarzzadeh V, Fernandez F, Tortorelli DA (2017) Topology optimization under uncertainty via non-intrusive polynomial chaos expansion. Comput Methods Appl Mech Eng 318:120–147

    Article  MathSciNet  Google Scholar 

  • Keshtegar B, Chakraborty S (2018) A hybrid self-adaptive conjugate first order reliability method for robust structural reliability analysis. Appl Math Model 53:319–332

    Article  MathSciNet  Google Scholar 

  • Khan FA, Khelifi F, Tahir MA, Bouridane A (2019) Dissimilarity Gaussian mixture models for efficient offline handwritten text-independent identification using SIFT and RootSIFT descriptors. IEEE T Inf Foren Sec 14(2):289–303

    Article  Google Scholar 

  • Lee SH, Chen W (2009) A comparative study of uncertainty propagation methods for black-box-type problems. Struct Multidiscip Optim 37(3):239–253

    Article  Google Scholar 

  • Lee SH, Kwak BM (2006) Response surface augmented moment method for efficient reliability analysis. Struct Saf 28:261–272

    Article  Google Scholar 

  • Lima RS, Kucuk A, Berndt CC (2002) Bimodal distribution of mechanical properties on plasma sprayed nanostructured partially stabilized zirconia. Materials Science & Engineering A 327(2):224–232

    Article  Google Scholar 

  • Low BK, Tang WH (2007) Efficient spreadsheet algorithm for first-order reliability method. J Eng Mech 133(12):1378–1387

    Article  Google Scholar 

  • MaiTre OPL, Knio OM, Najm HN, Ghanem RG (2004) Uncertainty propagation using wiener–Haar expansions. J Comput Phys 197(1):28–57

    Article  MathSciNet  MATH  Google Scholar 

  • Melchers RE (1999) Structural reliability analsyis and prediction. John Willy & Sons

  • Moens E, Araújo NA, Vicsek T, Herrmann HJ (2014) Shock waves on complex networks. Sci Rep 4:4949

    Article  Google Scholar 

  • Mori Y, Kato T (2003) Multinormal integrals by importance sampling for series system reliability. Struct Saf 25(4):363–378

    Article  Google Scholar 

  • Ni YQ, Ye XW, Ko JM (2010) Monitoring-based fatigue reliability assessment of steel bridges: analytical model and application. J Struct Eng 136(12):1563–1573

    Article  Google Scholar 

  • Ni YQ, Ye XW, Ko JM (2011) Modeling of stress spectrum using long-term monitoring data and finite mixture distributions. J Eng Mech 138(2):175–183

    Article  Google Scholar 

  • Pan Q, Dias D (2017) An efficient reliability method combining adaptive support vector machine and Monte Carlo simulation. Struct Saf 67:85–95

    Article  Google Scholar 

  • Papadrakakis M, Stefanou G, Papadopoulos V (2010) Computational methods in stochastic dynamics. Springer

  • Pranesh S, Ghosh D (2018) A FETI-DP based parallel hybrid stochastic finite element method for large stochastic systems. Comput Struct 195:64–73

    Article  Google Scholar 

  • Rackwitz R, Flessler B (1978) Structural reliability under combined random load sequences. Comput Struct 9(5):489–494

    Article  MATH  Google Scholar 

  • Rasmussen CE (2000) The infinite Gaussian mixture model. Adv Neural Inf Proces Syst 12(11):554–560

    Google Scholar 

  • Redner RA, Walker HF (1984) Mixture densities, maximum likelihood and the EM algorithm. SIAM Rev:195–239

    Article  MathSciNet  MATH  Google Scholar 

  • Schuöllera GI, Jensen HA (2008) Computational methods in optimization considering uncertainties-an overview. Computer Methods in Applied Mechinics and Engineering 198(1):2–13

    Article  MATH  Google Scholar 

  • Shi Y, Lu Z, Chen S, Xu L (2018) A reliability analysis method based on analytical expressions of the first four moments of the surrogate model of the performance function. Mech Syst Signal Process 111:47–67

    Article  Google Scholar 

  • Smolyak SA (1963) Quadrature and interpolation formulas for tensor products of certain classes of functions. Dokl Akad Nauk SSSR 4:240–243

    MATH  Google Scholar 

  • Stefanou G (2009) The stochastic finite element method: past, present and future. Comput Methods Appl Mech Eng 198(9–12):1031–1051

    Article  MATH  Google Scholar 

  • Timm DH, Tisdale SM, Turochy RE (2005) Axle load spectra characterization by mixed distribution modelling. J Transp Eng 131(2):83–88

    Article  Google Scholar 

  • Xia B, Lü H, Yu D, Jiang C (2015) Reliability-based design optimization of structural systems under hybrid pobabilistic and interval model. Comput Struct 160:126–134

    Article  Google Scholar 

  • Xiong F, Greene S, Chen W, Xiong Y, Yang S (2010) A new sparse grid based method for uncertianty propagation. Struct Multidiscip Optim 41(3):335–349

    Article  MathSciNet  MATH  Google Scholar 

  • Xiu D, Hesthaven J (2005) High order collocation method for differential equations with random inputs. SIAM J Sci Comput 27(3):1118–1139

    Article  MathSciNet  MATH  Google Scholar 

  • Xu J, Dang C, Kong F (2017) Efficient reliability analysis of structures with the rotational quasi-symmetric point- and the maximum entropy methods. Mech Syst Signal Process 95:58–76

    Article  Google Scholar 

  • Youn BD, Choi KK, Yang RJ, Gu L (2004) Reliability-based design optimization for crashworthiness of vehicle side impact. Struct Multidiscip Optim 26(3–4):272–283

    Article  Google Scholar 

  • Zellner A, Highfield RA (1988) Calculation of maximum entropy distributions and approximation of marginalposterior distributions. J Econ 37:195–209

    Article  Google Scholar 

  • Zhang J, Du X (2010) A second-order reliability method with first-order efficiency. J Mech Des 132(10):1006–1014

    Article  Google Scholar 

  • Zhang X, He J, Takezawa A, Kang Z (2018) Robust topology optimization of phononic crystals with random field uncertainty. Int J Numer Methods Eng 115(5):1154–1173

    Article  MathSciNet  Google Scholar 

  • Zhang Z, Jiang C, Han X, Ruan XX (2019) A high-precision probabilistic uncertainty propagation method for problems involving multimodal distributions. Mech Syst Signal Pr, accepted

  • Zhao YG, Ono T (2001) Moment methods for structural reliability. Struct Saf 23(1):47–75

    Article  Google Scholar 

  • Zivkovic Z (2004) Improved adaptive Gaussian mixture model for background subtraction. In: Proceedings of the 17th international conference on pattern recognition

    Google Scholar 

Download references

Funding

This work is supported by the National Natural Science Foundation of China (Grant No. 51805157, Grant No. 51725502 and Grant No. 51490662), Hunan Natural Science Foundation (Grant No. 2019JJ40015).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Jiang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Responsible Editor: Byeng D Youn

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(RAR 6 kb)

Appendix

Appendix

Deduction of the ith non-standard central moment \( {m}_i^{\prime } \):

$$ {m}_i^{\prime }=\int {\left(\frac{y-{\mu}_Y}{c}\right)}^i\rho (y) dy,i=0,1,...,l $$
(24)

where

$$ {\mu}_Y=\int y\rho (y) dy={m}_1 $$
(25)

Therefore, \( {m}_i^{\prime } \) is rewritten as:

$$ {m}_i^{\prime }=\int {\left(\frac{y-{m}_1}{c}\right)}^i\rho (y) dy,i=0,1,...,l $$
(26)

According to the rules of integral operation:

$$ {\displaystyle \begin{array}{l}{m}_i^{\prime }=\frac{1}{c^i}\int {\left(y-{m}_1\right)}^i\rho (y) dy\\ {}\kern0.75em =\frac{1}{c^i}\int \left[\sum \limits_{j=0}^i{B}_i^{j+1}{y}^{i-j}{\left(-{m}_1\right)}^j\right]\rho (y) dy\\ {}\kern0.75em =\frac{1}{c^i}\sum \limits_{j=0}^i{B}_i^{j+1}{\left(-{m}_1\right)}^j\int {y}^{i-j}\rho (y) dy\\ {}\kern0.75em =\frac{1}{c^i}\sum \limits_{j=0}^i{B}_i^{j+1}{\left(-{m}_1\right)}^j{m}_{i-j}\end{array}} $$
(27)

\( {B}_i^{j+1}=\left(\begin{array}{c}i\\ {}j\end{array}\right) \) is the binomial coefficient. Let j = j + 1, then, we obtain:

$$ {m}_i^{\prime }=\frac{1}{c^i}\sum \limits_{j=1}^{i+1}{B}_i^j{\left(-1\right)}^{j-1}{m_1}^{j-1}{m}_{i-j+1} $$
(28)

where \( {B}_i^j=\left(\begin{array}{c}i\\ {}j-1\end{array}\right) \).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Z., Wang, J., Jiang, C. et al. A new uncertainty propagation method considering multimodal probability density functions. Struct Multidisc Optim 60, 1983–1999 (2019). https://doi.org/10.1007/s00158-019-02301-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00158-019-02301-y

Keywords

Navigation